Walk-Sums and Gaussian BP (#210)
J. Johnson, D. Malioutov, A. Willsky (MIT)

Walk-sum framework for Gaussian inference, new sufficient conditions for BP convergence.

Information form of the Gaussian density:

\[p(x_1, ..., x_n) \propto \exp\left\{-\frac{1}{2}x^T J x + h^T x\right\} \]

\(J \) is sparse:

\[G = (V, E) \]

Define edge weights \(\rho_{ij} = -\frac{J_{ij}}{\sqrt{J_{ii}J_{jj}}} \).

Given a walk \(w \) in \(G \), let \(\rho(w) = \prod_{(i,j) \in w} \rho_{ij} \).

Walk-summable if spectral radius \(\rho(|R|) < 1 \), \(R \) is matrix of edge weights.*

\[\text{cov}(x_i, x_j) = \sum_{w:i\rightarrow j} \rho(w), \quad \text{mean}(x_i) = \sum_{w:*\rightarrow i} h \ast \rho(w) \]

*Includes trees, attractive models and diagonally dominant models.
Walk-Sum View of Belief Propagation

BP in trees ≡ recursive walk-sum calculation:

Loopy BP on G is equivalent to computing exact walk-sums in the computation tree:

WS on G ⇒ BP converges: means correct, variances → sums over backtracking walks.

A tighter condition is WS on the comp. tree:

(i) $\varrho_\infty = \lim_{n \to \infty} \varrho(|R_n|) \leq \varrho(|R|)$.
(ii) $\varrho_\infty < 1$ ⇒ BP variances converge.
(iii) $\varrho_\infty > 1$ ⇒ invalid computation tree.