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Abstract

For Gaussian graphical models with cycles, loopy belief propagation often performs reason-
ably well, but its convergence is not guaranteed and the computation of variances is generally
incorrect. In this paper, we identify a set of special vertices called a feedback vertex set whose
removal results in a cycle-free graph. We propose a feedback message passing algorithm in
which non-feedback nodes send out one set of messages while the feedback nodes use a dif-
ferent message update scheme. Exact inference results can be obtained in O(k2n), where
k is the number of feedback nodes and n is the total number of nodes. For graphs with
large feedback vertex sets, we describe a tractable approximate feedback message passing
algorithm. Experimental results show that this procedure converges more often, faster, and
provides better results than loopy belief propagation.
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Chapter 1

Introduction

In graphical models each node represents a random variable and the edge structure specifies

the conditional independence or Markov properties of the underlying distribution [24]. In

Gaussian graphical models, the distributions are Gaussian distributions, which have desirable

analytical convenience. Such models are widely used in many fields such as computer vision

[30,36], gene regulatory networks [3,43,44], medical diagnostics [5,17], oceanography [13,45],

and communication systems [11,21].

Although inference in Gaussian graphical models can be solved by direct matrix inversion

for problems of moderate sizes, it is intractable for very large problems involving millions of

random variables [15, 45, 46]. Efficient algorithms for solving such inference problems are of

great importance.

1.1 Motivations for the Feedback Message Passing Al-

gorithm

Belief propagation (BP) is an efficient message passing algorithm that gives exact inference

results in linear time for tree-structured graphs. The Kalman filtering algorithm in linear

estimation and forward-backward method in hidden Markov chain, can be viewed as spe-

cial cases of belief propagation. However, tree-structured models possess limited modeling
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capabilities, and many real world processes cannot be well-modeled using graphs without

cycles.

For inference in loopy graphs, loopy belief propagation (LBP) can be used as a direct

extension of BP by following the same local message passing rules. It turns out that LBP

performs reasonably well for certain loopy graphs [8,32]. The famous Turbo coding method

is also shown to be a successful example of LBP [31].

However, the convergence and correctness of LBP are not guaranteed in general, and

many studies have been conducted on the performance of LBP [20,29,38,42]. For Gaussian

graphical models, if LBP converges, the means converge to the correct values while the

variances are generally incorrect [42]. In [29] a walk-sum analysis framework is proposed

to analyze the performance of LBP in Gaussian graphical models. Based on the walk-sum

analysis some algorithms are proposed to obtain better inference results [6, 22,37].

A desirable property of LBP is that it is completely distributed. Any message update

only involves local information and local messages so that each node can do the computations

simultaneously. However, LBP has its limitations: global information of the cyclic structure

of the graph is not captured and thus errors and convergence problems may occur. One can

ask some natural questions: can we use some more memory to keep track of the messages or

use some header information to denote the sources of the messages? Are there some nodes

that are more important in terms of inference? Can we design an algorithm accordingly

without losing too much decentralization?

We consider a particular set of “important” nodes called feedback vertex set (FVS). A

feedback vertex set is a subset of vertices that breaks all the cycles in the graph. The high

level idea of our algorithm is to give priority to the “important” nodes, which use a different

message passing scheme than other nodes. Based on this viewpoint, we propose an algorithm

for Gaussian graphical models. The algorithm includes several message passing steps. The

whole procedure takes linear time to obtain the exact means and variances for all nodes if

the number of feedback nodes is bounded by a constant. More generally, the complexity is

O(k2n), where k is the number of the feedback nodes and n is the total number of nodes. For
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graphs with large feedback vertex sets, the exact feedback message passing can be intractable.

For such situations we develop an approximate feedback message passing algorithm to obtain

approximate results, where we can trade off between efficiency and accuracy explicitly.

1.2 Thesis Overview

The remainder of the thesis is organized as follows.

Chapter 2. Background

We first introduce some basic concepts in graph theory, graphical models and Gaussian

graphical models. Then we describe belief propagation and its immediate extension to loopy

belief propagation. A walk-sum analysis interpretation of inference problems and algorithms

is then discussed. Finally we introduce the key concept of feedback vertex set and some

relevant results and algorithms.

Chapter 3. Exact Feedback Message Passing

We show that for a class of graphs with small feedback vertex set, inference problems can

be solved efficiently by the feedback message passing algorithm. We start with the single

feedback node case, and illustrate the algorithm by concrete examples. Then we describe

the general algorithm with multiple feedback nodes, which is a direct extension of the single

feedback node case. We also prove the convergence and correctness of the algorithm.

Chapter 4. Approximate Feedback Message Passing

Though the exact feedback message passing algorithm always gives correct inference results,

it can be intractable when the size of the FVS is large. In this case, we can make some

approximations to obtain tractable algorithms. One natural way to make an approximation

is to use a set of feedback nodes of bounded size. Then we perform inference among the

non-feedback nodes approximately (using loopy belief propagation) while solving the small
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inference problem on the set of feedback nodes exactly. In this chapter we describe this

approximate algorithm and give relevant theoretical results.

Chapter 5. Numerical Results

We give numerical results of the performance of our algorithms. The experiments are per-

formed on grid graphs, in which inference problems are difficult to solve. We design a series

of experiments to analyze the convergence and accuracy of the approximate feedback mes-

sage passing algorithm. We also compare the performance of the algorithm with different

choices of pseudo-FVS.

Chapter 6. Conclusions

We summarize our results and propose future research problems.
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Chapter 2

Background

2.1 Graphical Models

A probability distribution of multiple random variables can be a complicated multivariate

function in general. However, there is often structural information that can be exploited.

As an extreme example, if the random variables are mutually independent, the density

function can be factorized into a product of univariate functions. A rich class of distributions

have conditional independence properties, which convey structural information implicitly. A

graphical model is a convenient and intuitive representation of such structural information,

where conditional independence properties can be read explicitly from the graph structure.

2.1.1 Basics in Graph Theory

Here we introduce some basic notions in graph theory that will be used throughout this

thesis. A comprehensive introduction to graph theory can be found in [10].

A graph G = (V , E) consists of a set of nodes or vertices V and a set of edges E . The

edges are pairs of two distinct nodes in V . These pairs can be ordered or unordered pairs.

A graph is a directed graph if the edges are ordered pairs or an undirected graph if the edges

are unordered pairs. In this thesis, we focus exclusively on undirected graphs. An edge is

represented by (s, t), where s and t are distinct nodes in V . We also say node s and node t
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are connected by edge (s, t). A graph is called a complete or fully connected graph if any two

nodes are connected.

The set of neighbors of node i is the set of nodes connected to node i, which is denoted

by N (i). The degree of node i is the number of its neighbors, which is denoted by deg(i).

A walk on a graph is a finite or infinite sequence of nodes in which the consecutive nodes

are neighbors in the graph. A path is a finite walk with distinct nodes. A graph is called a

connected graph if there exists a path between any pair of nodes. A cycle or loop is a walk

that starts and ends at the same node but all other nodes are distinct. A forest is a graph

without cycles. If a forest is a connected graph, it is called a tree. In this thesis, we use

tree-structured graph to refer to forests as well.

A subgraph G ′ = (V ′, E ′) of graph G = (V , E) is a graph satisfying V ′ ⊆ V and E ′ ⊆ E ,

where E ′ only involves nodes in V ′. A clique in a graph is a fully connected subgraph. A

maximal clique is a clique that is not contained in any larger clique.

Let A, B and C be three sets of nodes in a graph. Set C separates set A and set B if

any path from a node in A and a node in B contains at least one node in C.

2.1.2 Graph Representation of Probability Distributions

Graphical models defined on undirected graphs are called undirected graphical models, which

are also known as Markov graphical models or Markov random fields.

Consider a probability distribution p(x1, x2, · · · , xn) of n random variables. We use an

undirected graph with n nodes to represent the conditional independence structure, where

each node corresponds to a random variable. The edges of the graph are constructed such

that the distribution is Markov with respect to the graph: if set A and set B are sepa-

rated by set C, xA and xB are independent conditioned on xC , namely, p(xA,xB|xC) =

p(xA|xC)p(xA|xC). Based on this graph representation, many conditional independence

properties can be read immediately from the graph. For example, in Figure 2-1 node e is

independent of node b and c conditioned on a and d, since set {a, d} separates node e from

set {b, c} in the graph. Roughly speaking, any missing edge from a complete graph can give
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Figure 2-1: A simple Markov graphical model

us some structural information about the distribution.

The graph structure of a graphical model can lead to a factorization of the probability

distribution function. By the Hammersley-Clifford Theorem: If a probability distribution

p(x1, x2, · · · , xn) > 0,∀x = (x1, x2, · · · , xn), then p(x) can be factorized according to the

underlying graph structure by

p(x) =
1

Z

∏

C∈C
ψC(xC), (2.1)

where C is the set of all maximal cliques in the graph, ψC(xC) is a positive function defined

on xC , and Z =
∑

x

∏
C∈C ψC(xC) is the normalization factor, which is often called partition

function [24].

For a class of pairwise Markov graphical models, the functions defined on the cliques can

be further factorized into products of bivariate functions, corresponding to nodes or edges

on the graph. For such models, the distribution can be factorized as

p(x1, x2, · · · , xn) =
1

Z

∏

l∈V
φ(xl)

∏

(i,j)∈E
φ(xi, xj), (2.2)

where Z is the normalization factor.

Inference problems are to extract useful information from a given graphical model. In this
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thesis we are most interested in computing the marginal distribution of each node. Namely,

pi(xi) =
∑

xj∈V,j 6=i

p(x1, x2, · · · , xn), ∀i ∈ V . (2.3)

See [24] for detailed introduction to graphical models.

2.2 Gaussian Graphical Models

Exponential families of probability distributions have been widely studied [16, 18, 40]. The

distributions in this family are in the form

p(x; θ) = exp{∑
a

θaφa(xa)− Φ(θ)}, (2.4)

where φa(x) are sufficient statistics, θa are natural parameters, and

Φ(θ) = log
∫

exp(
∑
a

θaφa(xa))dx (2.5)

is the log partition function.

The domain of the natural parameters is the set of parameters that yield a normalizable

distribution or valid distribution, namely Θ = {θ|Φ(θ) < ∞}.
Under the graphical model framework, φa(xa) can be viewed as a function of a clique.

Therefore, we can construct the graph structure of a graphical model according to the given

sufficient statistics.

It is not hard to show that if we take the derivatives of the log partition function Φ(θ)

with respect to θ, we can obtain the moments of φa(xa):

∂Φ

∂θa

(θ) = E{φa(xa)} (2.6)

∂2Φ

∂θa∂θb

(θ) = E{(φa(xa)− E{φa(xa)})(φb(xb)− E{φb(xb)})}, (2.7)
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where the expectation is taken with respect to p(x; θ). For a valid distribution, the covariance

matrix is positive semidefinite, and thus the log partition function is a convex function of θ

within the domain.

An important exponential family of distributions is the family of Gaussian distribu-

tions. In Gaussian graphical models, the probability distributions are given by p(x) ∝
exp{−1

2
xT Jx + hTx}, where J is called the information, concentration or precision matrix

and h is called the potential vector.

We can define an underlying graph for the model, which is sparse with respect to J :

∀(i, j) /∈ E , Jij = 0. For a valid Gaussian distribution, J is symmetric and positive definite.

Compared to (2.4) we can relate the parameters of Gaussian distributions to the parameters

of the exponential family by:

{θa} = {hi} ∪ {−1

2
Jii} ∪ {−Jij}, ∀i ∈ V , ∀(i, j) ∈ E ,

{φa(xa)} = {xi} ∪ {x2
i } ∪ {xixj}, ∀i ∈ V , ∀(i, j) ∈ E .

Conditional independence in Gaussian distributions can be read immediately from the un-

derlying graph structure. We can also directly read the conditional independence from the

sparsity pattern of the information matrix. For instance, if Jij = 0, i 6= j, then xi and xj

are independent conditioned on all other variables. In general if J =




JAA JAB

JBA JBB


 and

h =




hA

hB


 , where A and B are sets of indices, the conditional distribution of xA given

xB = x̃B has information matrix JA|B = JAA and potential vector hA|B = hA−JABx̃B. More-

over, the conditional variance of xi given its neighbors xN (i) is Var{xi|xN (i)} = (Jii)
−1. The

marginal distribution of xA has the information matrix ĴAA given by ĴAA = JA−JABJ−1
BBJBA

and potential vector ĥA = hA − JABJ−1
BBhB.

The relationship with the mean µ = E{x} and the covariance matrix P = E{(x−µ)(x−
µ)T} is µ = J−1h and P = J−1.
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2.3 Belief Propagation

Belief propagation (BP) is a distributed message passing algorithm for solving inference

problems in graphical models, where each message is updated locally [33]. There are several

versions of BP such as sum-product and max-product for different inference problems. In

this thesis we use the sum-product version for obtaining marginal distributions. BP is well

defined on both tree-structured graphs and loopy graphs. The latter is often referred as

loopy belief propagation (LBP). The convergence and correctness of BP are guaranteed for

tree-structured graph. However, they are not guaranteed for LBP in general.

2.3.1 Belief Propagation for Tree-Structured Graphs

BP on a tree-structured graph gives the exact marginal distributions in linear time. In the

asynchronous version, message mi→j is sent from node i to its neighbor j after node i receives

messages from all other neighbors, where a suitable message scheduling scheme is needed1.

Alternatively, we can use the synchronous version of BP, where messages are updated in an

iterative way. In each iteration all messages are updated according to previous messages.

After convergence, all the messages reach the fixed points. Then we can use the fixed point

messages to compute the marginals and pairwise marginals for all nodes and edges.

Here is a summary of the synchronous version of belief propagation on tree-structured

graphical models. Consider a graphical model

p(x) =
1

Z

∏

i∈V
ψi(xi)

∏

(i,j)∈E
ψij(xi, xj). (2.8)

1. Message Passing

We initialize all the messages as m
(0)
i→j = 1, ∀(i, j) ∈ E .

1Start from the leaf nodes moving toward common “root” and then return to the leaves.
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At each iteration, the messages are updated based on previous messages:

m
(t)
i→j(xj) =

∫
ψi(xi)ψij(xi, xj)

∏

k∈N (i)\j
m

(t−1)
k→i (xi)dxi, ∀(i, j) ∈ E . (2.9)

After convergence, all the messages satisfy the fixed point equations:

mi→j(xj) =
∫

ψi(xi)ψij(xi, xj)
∏

k∈N (i)\j
mk→i(xi)dxi, ∀(i, j) ∈ E . (2.10)

For tree-structured models, the fixed point messages are obtained in linear time for

any initial values.

2. Marginals Computation

The marginals and pairwise marginals are computed based on the fixed point messages.

pi(xi) =
1

Zi

ψi(xi)
∏

k∈N (i)

mk→i(xi), (2.11)

where Zi is the normalization factor.

pij(xi, xj) =
1

Zij

ψi(xi)ψj(xj)ψij(xi, xj)
∏

k∈N (i)\j
mk→i(xi)

∏

l∈N (j)\i
ml→j(xj), (2.12)

where Zij is the normalization factor.

For tree-structured graph, the marginals and pairwise marginals computed above are

exact.

In practice, each message can be represented by a vector for discrete models. For con-

tinuous models, each BP message is a real function which is difficult to store and transfer

precisely. However, in Gaussian graphical models, the messages are Gaussian functions,

which can be easily represented by a few parameters. Here we also give the Gaussian BP as
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a special case of BP. Consider a Gaussian graphical model

p(x) ∝ e−
1
2
xT Jx+hT x. (2.13)

1. Message Passing

We initialize all the messages as ∆J
(0)
i→j and ∆h

(0)
i→j, ∀(i, j) ∈ E .

At each iteration, the messages are updated based on previous messages:

∆J
(t)
i→j = −Jji(Ĵ

(t−1)
i\j )−1Jij and ∆h

(t)
i→j = −Jji(Ĵ

(t−1)
i\j )−1ĥ

(t−1)
i\j , (2.14)

where

Ĵ
(t−1)
i\j = Jii +

∑

k∈N (i)\j
∆J

(t−1)
k→i and ĥ

(t−1)
i\j = hi +

∑

k∈N (i)\j
∆h

(t−1)
k→i . (2.15)

After convergence, all the messages reach the fixed points: ∆Ji→j and ∆hi→j, ∀(i, j) ∈
E .

For tree-structured models, the fixed point messages are obtained in linear time for

any initial values.

2. Marginals Computation

The variances, means and covariances for all nodes or edges are computed based on

the fixed point messages:

Ĵi = Jii +
∑

k∈N (i)

∆Jk→i and ĥi = hi +
∑

k∈N (i)

∆hk→i, (2.16)

which can be converted to the variance and mean by Pii = Ĵ−1
i and µi = Ĵ−1

i ĥi.

Every edge (i, j) ∈ E computes the covariance between xi and xj by

Pij = Jij/[J
2
ij − (Jii +

∑

k∈N (i)\j
∆Jk→i)(Jjj +

∑

l∈N (j)\i
∆Jl→j)]. (2.17)
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For tree-structured graph, the variances, means and covariances computed above are

exact.

The convergence and correctness of BP on trees are given by the following proposition.

Proposition 2.1. Belief propagation for tree-structured Gaussian graphical models is guar-

anteed to converge in linear time and gives exact variances and means for all nodes.

Proof. See [24].

2.3.2 Belief Propagation for Loopy Graphs

LBP has the same message passing and marginals computation steps. In the message passing

step, the messages are updated by the same equation as in (2.9). However, for general graphs,

the messages are not guaranteed to reach fixed points. If the messages do reach fixed points,

we proceed to compute the “marginals” and “pairwise marginals” as in (2.11) and (2.12).

Note that even if the messages reach fixed points, the marginals and pairwise marginals we

obtained are inaccurate in general.

For Gaussian graphical models, the messages are updated as in (2.14). When the mes-

sages reach fixed points, we compute the LBP approximations of the variances, means and

covariances by (2.16) and (2.17). Again, the messages are not guaranteed to converge. Even

if they converge, the estimated variances are not accurate in general.

An important property of LBP in Gaussian graphical models is as follows.

Proposition 2.2. When LBP converges in Gaussian graphical models, i.e. all the messages

reach fixed points, the means given by LBP are exact.

Proof. Refer to Claim 5 in [42] for a proof. In [28] a walk-sum interpretation is provided in

Proposition 3.2.4.
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2.4 Walk-sum Analysis

Inference in Gaussian graphical models can be interpreted from a walk-sum point of view.

The variances and means can be viewed as the sums of walks defined on the underlying

graph. Thus the algorithms for solving inference problems can be considered as capturing

walks. Walk-sum analysis is useful because we can use this interpretation to verify and

develop inference algorithms. If we can show that the walks captured by a certain algorithm

are exactly all necessary walks, the correctness of the algorithm is then verified. On the

other hand, we can also analyze why some algorithms do not give the accurate inference

results by showing the missing walks.

For a Gaussian graphical model, we can normalize the information matrix J such that

all the diagonal entries equal 1. Let R = I − J , then R has zero diagonal. Every non-zero

off-diagonal entry corresponds to an edge in the underlying graph. We set the weight of the

edge between node i and j as Rij, the i, jth entry of R. The matrix R is called the edge

weight matrix.

A walk of length l ≥ 0 is defined as a sequence w = (w0, w1, w2, ..., wl), where wi ∈ V ,

i ∈ 0, 1, ..., l and each step (wi, wi+1) corresponds to an edge in the graph. The weight of a

walk is defined as the product of the edge weights,

φ(w) =
l(w)∏

k=1

Rwk−1,wk
, (2.18)

where l(w) is the length of walk w. Also, we define the weight of a zero length walk, i.e., a

single node as 1.

By the Neumann power series for matrix inversion,

P
∆
= J−1 = (I −R)−1 =

∞∑

k=0

Rk, for ρ(R) < 1, (2.19)

where ρ(R) is the spectral radius of R, defined as the largest absolute eigenvalue for a

symmetric matrix R.
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We define the walk-sum or sum of walks as the sum of weights of walks in a set:

φ(W)
∆
=

∑

w∈W
φ(w), (2.20)

where W is a set of walks. We denote φ(i → j) as the sum of all walks from node i to node

j. Also, we call φ(i → i) the self-return walk-sum of node i.

We can show that the i, jth entry of Rl is the sum of all walks of length l from node i to

node j, denoted by φl(i → j). Then

Pij =
∞∑

l=0

φl(i → j). (2.21)

Therefore, Pij = φ(i → j) =
∑∞

l=0 φl(i → j).

A Gaussian graphical model is walk-summable if for all i, j ∈ V , the walk-sum φ(i → j)

converges for any order of the summands. Several equivalent conditions for walk-summability

are given as follows.

Proposition 2.3. The following conditions are equivalent to walk-summability:

(i)
∑
{w:i→j} |φ(w)| converges for all i, j ∈ V, where {w : i → j} is the set of walks from

i to j.

(ii) ρ(R̄) < 1, where R̄ takes the entrywise absolute value of R.

Proof. See Proposition 3.1.1 in [28].

In walk-summable models, φ(i → j) is well-defined for all i, j ∈ V . The covariances and

means can be expressed as

Pij = φ(i → j) and µi =
∑

j∈V
hjPij =

∑

j∈V
hjφ(i → j). (2.22)

For walk-summable models, there are some important properties:

1. If {Un}∞n=1 is a countable collection of mutually disjoint walks, we have φ(
⋃∞

n=1 Un) =
∑∞

n=1 φ(Un).
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2. If u = (u0, ..., un), v = (v0, ...vm) and un = v0, we define the product of walks u and

v as the concatenation of u and v, namely, uv = (u0, ..., un, v1, ..., vm). Consider a

set U with all walks ending at node uend and a set V with all walks starting at node

vstart = uend. We define UV = {uv|u ∈ U , v ∈ V}. If ∀w ∈ UV there is a unique pair

(u, v) ∈ U × V such that uv = w, we call (U ,V) a valid decomposition. For any valid

decomposition (U ,V), φ(UV) = φ(U)φ(V)

By the above properties, we have two formulas as follows.

1. The single-visit self-return walk-sum φ(i
\i→ i) denotes the walk-sum of all non-zero

length walks that start at node i and end at node i but do not visit node i in between.

We have

φ(i → i) =
1

1− φ(i
\i→ i)

. (2.23)

2. For i 6= j, the single-visit walk-sum φ(i
\j→ j) denotes the walk-sum of all the walks

that start at node i and end at node j but do not visit node j in between. We have

φ(i → j) = φ(i
\j→ j)φ(j → j). (2.24)

A comprehensive walk-sum analysis of belief propagation in Gaussian graphical models

is given in [28]. Here we list some propositions that we will use later in this thesis.

Proposition 2.4. A Gaussian graphical model is walk-summable if it is attractive, i.e. any

edge weight Rij, is nonnegative.

Proposition 2.5. LBP converges for a walk-summable Gaussian graphical model.

Proposition 2.6. In walk-summable models, the LBP variance estimation for a node is a

sum over all backtracking walks of the node, which is a subset of all self-return walks needed

to calculate the correct variance.
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Figure 2-2: An example of the FVS

Here a backtracking walk is a self-return walk that can be reduced consecutively to a

single node. Each reduction is to replace a subwalk of the form {i, j, i} by the single node

{i}.

2.5 Feedback Vertex Set

A feedback vertex set (FVS), sometimes also called a loop cutset or cutset, is defined as a set

of vertices whose removal results in an acyclic graph [39]. For instance, node 1 in Fig 2-2

forms an FVS by itself. The problem of finding the FVS of the minimum size is called the

minimum feedback vertex set problem, which has been widely studied in graph theory and

computer science community. It has many applications such as genome assembly and VLSI

chip design [4,34]. In combinatorial circuits, some circuit components may receive new input

signals before they stabilize if there are cycles in the circuits. We can solve the problem by

placing some clocked registers at the FVS so that the cyclic effect can be eliminated. Finding

a minimum FVS is then a natural problem for minimizing the cost of registers.

For a general graph, the decision version of the minimum feedback vertex set problem,

namely, deciding whether there exists an FVS of size at most k, has been proved to be

NP-complete [25]. It is actually among the earliest problems for which NP-completeness has

been shown. Finding the minimum FVS for general graphs is still an active research area.
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The fastest algorithm to date has the complexity of O(1.7548n), where n is the number of

nodes [14].

However, if we have some prior knowledge about the graph structure, optimal or near

optimal solutions can be found efficiently or even in linear time for many special graph

structures. In [35] the authors showed that in reducible graphs the minimum FVS can

be found in linear time. In [41] and [26] polynomial time algorithms are proposed to find

the minimum FVS for cyclically reducible graphs and AT-free graphs. Fixed parameter

polynomial time algorithms are also developed to find the minimum FVS if the minimum

size is known to be bounded by a parameter [9].

In addition, approximate algorithms are also proposed to give an FVS whose size is

bounded by a factor times the minimum possible size [1, 2, 12].

In [1] the authors propose a factor 2 approximate algorithm that gives an FVS of size

at most 2 times the minimum size. We introduce this algorithm in this section. First

we describe some useful notions and operations related to this approximate minimum FVS

selection algorithm, such as clean graphs, graph cleaning and semi-disjoint cycles. More

detailed descriptions can be found in [1].

A graph is called a clean graph if there are no leaf nodes, i.e. nodes of degree one or

zero. The graph cleaning operation is to remove the leaf nodes with their incident edges and

keep removing the newly generated leaf nodes until the remaining graph is a clean graph. In

other words, the graph cleaning operation removes all the tree branches in a graph. For a

graph with n nodes, the graph cleaning operation can be done in time O(n), assuming the

degree of each node is already available.

A disjoint cycle is a cycle in a graph where all nodes in it have degree 2. A semi-disjoint

cycle is a cycle where all nodes in the cycle have degrees 2 with at most one exception.

For instance, the cycle abcda in Figure 2-3 is a semi-disjoint cycle with node a being the

exception. A path with only degree-2 nodes is called an non-branching path. Detecting

semi-disjoint cycles can be done in time O(n + m).

We summarize the factor 2 minimum FVS selection algorithm in Figure 2-4.
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Figure 2-3: A semi-disjoint cycle abcda

Input: an undirected graph G = (V , E)
Output: a feedback vertex set F

1. Initialize F = ∅ and w(i) = 1, ∀i ∈ V .

2. Clean up G. Update V to be the set of the remaining nodes.

3. While V 6= ∅, repeat

• If G contains a semi-disjoint cycle C, then
γ = min{w(i); i ∈ V} and let w(i) ← w(i)− γ, ∀i ∈ C.
Else
γ = min{w(i)/(deg(i)− 1); i ∈ V} and let w(i) ← w(i)− γ(deg(u)− 1), ∀i ∈ V .

• Remove each node i with w(i) = 0 from V and add it to F . Push it onto stack S.

• Clean up G.

4. While stack S 6= ∅, repeat

• i = pop(S)

• If F − {i} is an FVS in the original G, remove i from F .

Figure 2-4: A factor 2 approximate algorithm for the minimum FVS problem
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The complexity of this algorithm is given as follows.

Proposition 2.7. The algorithm in Figure 2-4 gives a minimal FVS of size at most two

times the size of the minimum FVS in time O(min{m log n, n2}), where m and n are the

numbers of the edges and vertices respectively.

An FVS is called a minimal FVS if it does not contain any smaller FVS. In other words,

if we remove any node from a minimal FVS, it is no longer an FVS.

Proof. See [1].
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Chapter 3

Exact Feedback Message Passing

As we discussed in the background chapter, inference on a tree-structured graph can be

solved exactly by BP in linear time with respect to the graph size. For graphs with cycles,

the convergence and correctness of LBP are not guaranteed. In this chapter, we show that

for a class of graphs with small feedback vertex set (FVS), inference problems can be solved

efficiently by the feedback message passing (FMP) algorithm.

The high level idea of the FMP algorithm is to select a set of nodes as feedback nodes. We

use a special message update scheme for the feedback nodes while using standard BP message

passing scheme for the non-feedback nodes. The feedback nodes are selected to break all

the cycles in the graph. There are two rounds of message passing in FMP, each requires

some amount of memory and communication capacity, according to the graph structure. In

the FMP algorithm, we perform two rounds of BP with different parameters. In the first

round of BP, we obtain the inaccurate “partial variance” and “partial mean” as well as some

“feedback gain” for every non-feedback node. Next we compute the exact inference results

for the feedback nodes. In the second round of BP, we make corrections to the “partial

variance” and “partial mean” of the non-feedback nodes.

In this chapter we start with the single feedback node case, and illustrate the algorithm

by concrete examples. Then we describe the general FMP algorithm with multiple feedback

nodes. We will also discuss the correctness and complexity of the FMP algorithm.
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3.1 The Single Feedback Node Case

3.1.1 FMP with a Single Feedback Node

Consider the loopy graph in Figure 3-1(a). A Gaussian graphical model is defined on this

graph. Let J and h be the information matrix and potential vector of the model respectively.

In this graph every cycle passes through node 1, which can be used as the single feedback

node for the graph. We denote the set of neighboring nodes of node 1 as N (1). We use

T to denote the subgraph excluding node 1 and its incident edges. Graph T is a tree or a

disconnected forest, which does not have any cycles. Here we call such graphs tree-structured

graphs. With node 1 being the feedback node, the FMP algorithm has the following steps:

Step 1: Initialization

We construct a new potential vector h1 on T , where h1
i = J1i, ∀i ∈ N (1) and h1

i =

0, ∀i /∈ N (1), i 6= 1. We can view this step as node 1 sending messages to its neighbors to

initiate h1. The new potential vector h1 captures some of node 1’s effects on T so that nodes

in T can process this information. See Figure 3-1(b) for illustration.

Step 2: First Round of BP

BP is performed on T with model parameters JT and hT , where JT and hT are the

corresponding submatrix and subvector of J and h respectively. After convergence each node

i in T obtains its “partial variance” P T
ii = (J−1

T )ii and its “partial mean” µTi = (J−1
T hT )i

by the standard BP on T . Note that these results are not the true variances and means

since they only capture local structures within T without considering the effects of node

1. Another BP is performed on T with the the same information matrix JT and the new

potential vector h1. Each node i on T will get a feedback gain g1
i , where g1

i = (J−1
T h1)i by

standard BP on T .

In practice we only need to run BP once, with JT and two potential vectors hT and h1

simultaneously. We also put the header information “1” into the messages related to h1 to

mark the source of the messages. Since T is a tree-structured graph, BP converges after a

finite number of iterations in linear time. After convergence, every node i knows its “partial
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variance” P T
ii = (J−1

T )ii, “partial mean” µT
i = (J−1

T hT )i and feedback gain g1
i = (J−1

T h1)i.

Step 3: Inference for the Feedback Node

Feedback node 1 collects the feedback gains from its neighbors as shown in Figure 3-1(d).

Node 1 then calculates the exact variance and mean for itself by

P11 = (J11 −
∑

j∈N (1)

J1jg
1
j )
−1, (3.1)

µ1 = P11(h1 −
∑

j∈N (1)

J1jµ
T
j ). (3.2)

In this step, all the computations only involve local parameters and the feedback gain or

“partial mean” of node 1’s neighbors.

Step 4: Feedback Message Passing

After feedback node 1 obtains its own variance and mean, it passes the results to other

nodes in order to correct their “partial variances” P T
ii and “partial means” µTi as computed

in Step 2 (see Figure 3-1(e)).

The neighbors of node 1 revise their node potentials as follows:

h̃j =





hj − J1jµ1, ∀j ∈ N (1)

hj, ∀j /∈ N (1).
(3.3)

From this formula we see that only node 1’s neighbors revise their node potentials. The

revised potential vector h̃T is then be used in the second round of BP.

Step 5: Second Round of BP

We perform BP on T with JT and h̃T (see Figure 3-1(f)). The means µi = (J−1
T h̃T )i

obtained from BP are the exact means.

The exact variances can be computed by adding correction terms to the “partial vari-

ances”.

Pii = P T
ii + P11(g

1
i )

2, ∀i ∈ T , (3.4)

where the “partial variance” P T
ii and the feedback gain g1

i are computed in Step 2. This

computation is local when P11 is propagated throughout the graph as a message.
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(a) A loopy graph (b) Message initialization (c) First round of BP

(d) Forward messages (e) Feedback messages (f) Second round of BP

Figure 3-1: The FMP algorithm with a single feedback node

In Appendix A, we will give another example of the FMP algorithm with a single node.

We write down all the feedback messages explicitly.

3.1.2 A Walk-sum Analysis for FMP with a Single Feedback Node

We now give a walk-sum interpretation of why the FMP algorithm with a single feedback

node gives the exact inference results. A more rigorous proof is provided when we discuss

the FMP algorithm for general graphs.

As we described in the background chapter, the exact means and variances in Gaussian

graphical models can be interpreted as sums of walks on the graphs. If we can show that

the solution given by an algorithm captures exactly all walks needed, the correctness of the

algorithm is then verified. In this section, we will show that the FMP algorithm with a single

feedback node indeed captures exactly all necessary walks for correct inference.

Assume there exists a single feedback node in the graph G of n nodes. We number the
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feedback node as node 1 and we denote the tree-structured graph achieved by eliminating

node 1 as T . A Gaussian graphical model with information matrix J and potential vector h is

Markov with respect to G. Without loss of generality, we can assume J has been normalized

so that all the entries in the diagonal equal to one. Let R = I − J , where I is the identity

matrix. Following the notations in the background chapter, ∀i 6= j, Rij = −Jij is the weight

of a single step from node i to node j. By (2.22), the variance of node 1 can be calculated

by

P11 = φ(1
G→ 1), (3.5)

where φ(1
G→ 1) denotes the sum of all walks starting from and ending at node 1 within G.

We call φ(1
G→ 1) the self-return walk-sum of node 1.

By (2.23), we have

φ(1
G→ 1) =

1

1− φ(1)(1
G→ 1)

, (3.6)

where φ(1)(1
G→ 1) is called the single-visit self-return walk-sum of node 1. It is defined as

the sum of all the walks from node 1 to node 1 within G that do not visit node 1 in between.

For any such single-visit self-return walk, it must visit a neighbor j at the first step from

node 1 and visit a neighbor k at the last step before it ends at node 1. In between, the walk

can be any walk from j to k within T . This decomposition guarantees that the walk visit

node 1 exactly once after it leaves node 1. By enumerating the combinations of j and k, we

can compute φ(1)(1
G→ 1) by

φ(1)(1
G→ 1) =

∑

j∈N (1)

∑

k∈N (1)

φ(j
T→ k)J1jJk1. (3.7)

We can further simply the expression as

φ(1)(1
G→ 1) =

∑

k∈N (1)

J1k(
∑

j∈N (1)

J1jφ(j
T→ k)) (3.8)

=
∑

k∈N (1)

J1kg
1
k, (3.9)
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where g1
k =

∑
j∈N (1) J1jφ(j

T→ k).

By (2.22), the mean of node i is a weighted sum of walk-sums:

µi =
∑

j∈G
hjφ(j

G→ i). (3.10)

Comparing the expression of g1
k with (3.10), g1

k can be interpreted as the “mean” of node

k when we consider a model defined on T with the submatrix JT of J as the information

matrix and h1 = JT ,1 as the potential vector. By Proposition 2.1, g1
k is calculated exactly

by performing BP, since T is a tree-structured graph. Therefore, g1
k here is the same as g1

k

in (3.1).

By substituting (3.9) into (3.6), we have

P11 = (1− ∑

k∈N (1)

J1kg
1
k)
−1. (3.11)

Since J11 has been normalized to 1, the formula is the same as in the FMP algorithm.

Therefore, the variance of the feedback node 1 by the FMP algorithm is exact.

By (2.24),

φ(i
G→ 1) = φ(1)(i

G→ 1)φ(1
G→ 1),∀i 6= 1, (3.12)

where φ(1)(i
G→ 1) is the single-visit walk-sum from i to 1. It is defined as the sum of all the

walks from i to 1 that visit node 1 exactly once.

The interpretation of this walk-sum equation is that any walk from i to 1 can be uniquely

decomposed into two parts: the walk starting from i until its first visit to node 1; any walk

starting from 1 and ending at 1. We can further categorize a walk in the first part according

to which node it visits before its first visit to 1. Then

φ(1)(i
G→ 1) =

∑

j∈N (1)

φ(i
T→ j)(−Jj1) = −g1

k, (3.13)

where by our notation, −Jj1 = Rj1 is the weight of a single step walk from j to 1.

With the above formulas, we can show that the mean of the feedback node 1 is computed
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exactly by the FMP algorithm. By (3.10),

µ1 =
∑

i

hiφ(i
G→ 1) (3.14)

=
∑

i6=1

hiφ(i
G→ 1) + h1φ(1

G→ 1). (3.15)

By (3.12) and (3.13),

µ1 =
∑

i 6=1

hiφ
(1)(i

G→ 1)φ(1
G→ 1) + h1φ(1

G→ 1) (3.16)

= (
∑

i6=1

hi

∑

j∈N (1)

φ(i
T→ j)(−Jj1))φ(1

G→ 1) + h1φ(1
G→ 1) (3.17)

= (− ∑

j∈N (1)

Jj1

∑

i6=1

hiφ(i
T→ j) + h1)φ(1

G→ 1) (3.18)

= (h1 −
∑

j∈N (1)

Jj1µ
T
j )P11, (3.19)

where µTj =
∑

i6=1 hiφ(i
T→ j). Here µTj can be exactly computed by running BP in T with

JT and hT . It is the same µTj as in the FMP algorithm. This shows that the FMP algorithm

gives the exact mean for the feedback node.

We continue to show that FMP also gives the correct means and variances for nodes in

T after the second round of BP.

For i 6= 1, µi =
∑

j

hjφ(j
G→ i) (3.20)

=
∑

j 6=1

hjφ(j
G→ i) + h1φ(1

G→ i). (3.21)

In this formula, φ(j
G→ i) is the sum of all the walks in G from j to i. These walks can be

classified to two categories: all walks from j to i within T and all the walks that visit 1 at

least once. We denote the sum of the latter walks as φ
(1)
1 (i

G→ j). Then

φ(j
G→ i) = φ(j

T→ i) + φ
(1)
1 (i

G→ j). (3.22)
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Note that we will frequently use the fact that walk-sum is symmetric, namely, φ(i
G→ j) =

φ(j
G→ i) in our following steps. It is because the weight of any walk remains the same when

we reverse the order of every step. Any walk that visits node 1 at least once can be uniquely

decomposed into: a walk within T from i to one of 1’s neighbors; a step from 1’s neighbor

k to node 1; and any walk from 1 to j within G. We have

φ
(1)
1 (i

G→ j) =
∑

k∈N (1)

φ(i
T→ k)(−Jk1)φ(1

G→ j). (3.23)

Substituting (3.22) and (3.23) into (3.21), we have

µi =
∑

j 6=1

hj[φ(j
T→ i) +

∑

k∈N (1)

φ(i
T→ k)(−Jk1)φ(1

G→ j)] + h1φ(1
G→ i) (3.24)

=
∑

j 6=1

hjφ(j
T→ i) +

∑

j 6=1

hj

∑

k 6=1

[
(−J1k)φ(i

T→ k)φ(1
G→ j)

]
+ h1φ(1

G→ i). (3.25)

By (3.12) and (3.13),

µi =
∑

j 6=1

hjφ(j
T→ i) +

∑

j

hj

∑

k 6=1

(−J1k)φ(i
T→ k)φ(1

G→ j) (3.26)

=
∑

j 6=1

hjφ(j
T→ i) +

∑

k

hk

∑

j 6=1

(−J1j)φ(i
T→ j)φ(1

G→ k) (3.27)

=
∑

j 6=1

hjφ(j
T→ i) +

∑

j 6=1

(−J1j)[
∑

k

hkφ(1
G→ k)]φ(i

T→ j). (3.28)

Since µ1 =
∑

k hkφ(1
G→ k),

µi =
∑

j 6=1

hjφ(j
T→ i) +

∑

j 6=1

(−J1j)µ1φ(i
T→ j) (3.29)

=
∑

j 6=1

(hj − J1jµ1)φ(j
T→ i) (3.30)

=
∑

j 6=1

h̃jφ(j
T→ i), (3.31)

where h̃j = hj−J1jµ1. It is the same as the revised node potential h̃j in the FMP algorithm.

The last equation is equivalent to performing BP on T with the revised the potential vector
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h̃T as in the FMP algorithm. This shows the correctness of the means in the FMP algorithm.

Finally, we show that the variances of nodes in T are also computed exactly in the FMP

algorithm. The exact variance of node i in T is the sum of all the walks starting from and

ending at node i. These walks can be categorized into all the walks within T and all the

walks that visit node 1 at least once. Therefore,

φ(i
G→ i) = φ(i

T→ i) + φ
(1)
1 (i

G→ j). (3.32)

Any such walk can be decomposed into three parts: a single visit walk from i to 1; any walk

from i to i; and the reverse of a single-visit walk from i to 1. Therefore,

φ(i
G→ i) = φ(i

T→ i) + φ(1)(i
G→ 1)φ(i

G→ i)φ(1)(i
G→ 1). (3.33)

By (3.13),

Pii = P T
ii + (−g1

i )P11(−g1
i ) = P T

ii + P11(g
1
i )

2, (3.34)

where P T
ii , g1

i and P11 are all the same quantities as in the FMP algorithm. This completes

our walk-sum analysis for the FMP algorithm with a single feedback node.
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3.2 Feedback Message Passing for General Graphs

For a general graph, the removal of a single node may not break all the cycles. We may

need multiple nodes to form an FVS. The FMP algorithm with a single feedback node can

be extended by adding extra feedback messages. Each extra message corresponds to one

feedback node in the FVS. Since the computational complexity depends on the size of the

FVS, it is important to find a small FVS before we apply the FMP algorithm.

There are many algorithms to find a small FVS. We can use an exact algorithm to find

the minimum FVS or we can use an efficient approximate algorithm to find an FVS of small

size, but not necessarily the minimum size. For example, the algorithm described in Figure

2-4 gives an FVS of size at most two times the minimum size in O(min{m log n, n2}), where

m is the number of edges and n is the number of nodes. This algorithm is efficient and

has been widely used. If we want to solve many problems with different parameters but the

same structure, we may instead use a more complex algorithm to obtain a smaller FVS. How

to choose the appropriate FVS selection algorithm depends on practical problems. In this

section, we assume the FVS F is given by certain algorithm before we perform the FMP

algorithm.

3.2.1 Feedback Message Passing Algorithm

Without loss of generality, we order the nodes such that nodes in F are the first k nodes,

where k is the size of F . The FMP algorithm with multiple feedback nodes is essentially the

same as with a single feedback node. Now k extra potential vectors are used instead of just

one. In the single feedback node case, we can directly compute the mean and variance for

the feedback node after the first round of BP. Here we need to solve an inference problem on

a smaller graph of size k. The exact variances are computed by adding multiple correction

terms to the “partial variances”. The exact means are computed by a second round of BP

with a revised potential vector, which has “listened” to the feedback nodes.

The FMP algorithm with a given FVS F is summarized in Figure 3-2.
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Input: information matrix J , potential vector h and feedback vertex set F of size k
Output: mean µi and variance Pii for every node i

1. Construct k extra potential vectors: ∀p ∈ F ,hp = JT ,p, each corresponding to one
feedback node.

2. Perform BP on T with JT , hT to obtain P T
ii = (J−1

T )ii and µTi = (J−1
T hT )i for each i ∈

T . With the k extra potential vectors, calculate the feedback gains g1
i = (J−1

T h1)i, g
2
i =

(J−1
T h2)i, . . . , g

k
i = (J−1

T hk)i for i ∈ T by BP .

3. Obtain a size k subgraph with ĴF and ĥF given by

(ĴF)pq = Jpq −
∑

j∈N (p)∩T
Jpjg

q
j , ∀p, q ∈ F

(ĥF)p = hp −
∑

j∈N (p)∩T
Jpjµ

T
j , ∀p ∈ F ,

and solve the inference problem on the small graph by PF = Ĵ−1
F , µF = Ĵ−1

F ĥF .

4. Revise the potential vector on T by

h̃i = hi −
∑

j∈N (i)∩F
Jijµ

F
j , ∀i ∈ T .

5. Another round of BP with the revised potential vector h̃T gives the exact means for
nodes on T .

Add correction terms to obtain the exact variances for nodes in T :

Pii = P T
ii +

∑

p∈F

∑

q∈F
gp

i P
F
pqg

q
i , ∀i ∈ T .

Figure 3-2: The Feedback Message Passing algorithm
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3.2.2 Correctness and Complexity of the FMP algorithm

In this section, we analyze the correctness and computational complexity of the FMP algo-

rithm.

Theorem 3.1. The feedback message passing algorithm described in Figure 3-2 gives the

exact means and exact variances for all nodes.

Proof. Given the model parameters J and h, with an FVS F of size k, we want to compute

the variances of all nodes, which are the diagonal entries of P = J−1, and compute the means

µ = J−1h of all nodes. Without loss of generality, we order the nodes such that the feedback

nodes are the first k nodes. The other nodes are numbered from k + 1 to n. Following this

ordering, we can write the model parameters as

J =




JF J ′M

JM JT


 and h =




hF

hT


 . (3.35)

For a valid model, J Â 0. Then we have JF Â 0, JT Â 0 and JF −J ′MJ−1
T JM Â 0. Note that

JT is tree-structured by our definition of F .

Similarly, we can write

P =




PF P ′
M

PM PT


 and µ =




µF

µT


 . (3.36)

By the above notations,

JM = [h1,h2, . . . ,hk], (3.37)

where h1, h2,. . ., hk are the same as in the FMP algorithm. The feedback gain g1,g2, . . . ,gk

in the FMP algorithm are computed by BP with h1,h2, . . . ,hk as the potential vectors.

By Proposition 2.1, BP gives the exact inference results on trees. Therefore,

[g1,g2, . . . ,gk] =
[
J−1
T h1, J−1

T h2, . . . , J−1
T hk

]
= J−1

T JM . (3.38)
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In the FMP algorithm, µT is computed by BP using hT as the potential vector, then

µT = J−1
T hT . (3.39)

In the FMP algorithm, the diagonal of J−1
T is also calculated exactly in the first round of

BP as P T
ii = (J−1

T )ii.

Since P = J−1, we have




JF J ′M

JM JT







PF P ′
M

PM PT


 =




IF 0

0 IT


 . (3.40)

Then

JMP ′
M + JT PT = IT (3.41)

JMPF + JT PM = 0. (3.42)

Thus

PT = J−1
T − J−1

T JMP ′
M (3.43)

P ′
M = −PF(J−1

T JM)′. (3.44)

By substituting (3.44) to (3.43), we have

PT = J−1
T + (J−1

T JM)PF(J−1
T JM)′. (3.45)

By (3.38), we have

PT = J−1
T + [g1,g2, . . . ,gk]PF [g1,g2, . . . ,gk]′. (3.46)
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Therefore,

Pii = P T
ii +

∑

p∈F

∑

q∈F
gp

i (PF)pq gq
i , ∀i ∈ T , (3.47)

where gp is computed in the FMP algorithm. Here PF is the exact covariance matrix of the

feedback nodes in F . This is the same equation as in the FMP algorithm. To show that the

FMP algorithm gives the correct variances, later we will show that PF is indeed calculated

exactly in the FMP algorithm.

Since µ = J−1h, we have




JF J ′M

JM JT







µF

µT


 =




hF

hT


 . (3.48)

Then

JMµF + JT µT = hT (3.49)

µT = J−1(hT − JMµF). (3.50)

We define h̃T = hT − JMµF , namely

(h̃T )i =





hi −∑
j∈N (i)∩F Jijµj i ∈ N (F)

hi i /∈ N (F),
(3.51)

whereN (F) =
⋃

j∈F N (j)\F , and µF is the exact mean of nodes in F . This step is equivalent

to performing BP with parameters JT and the revised potential vector h̃T as in the FMP

algorithm.

To complete the proof, we need to show that the FMP algorithm indeed gives the exact

PF and µF .

By the equation of Schur’s complement,

ĴF
∆
= P−1

F = JF − J ′MJ−1
T JM Â 0 (3.52)

ĥF
∆
= P−1

F µF = hF − J ′MJ−1
T hT . (3.53)
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Therefore,

ĴF = JF − J ′M [g1,g2, . . . ,gk] (3.54)

ĥF = hF − J ′MµT . (3.55)

This is exactly the same as in the FMP algorithm:

(ĴF)pq = Jpq −
∑

j∈N (p)∩T
Jpjg

q
j , ∀p, q ∈ F

(ĥF)p = hp −
∑

j∈N (p)∩T
Jpjµ

T
j , ∀p ∈ F .

Therefore, we get the exact mean and exact covariance matrix for nodes in F by solving

PF = (ĴF)−1 and µF = PF ĥF . This completes the proof.

Proposition 3.2. The computational complexity of the FMP algorithm in Figure 3-2 is

O(k2n), where k is the size of the FVS and n is the total number of nodes in the graph.

Proof. We analyze the complexity step by step (see Figure 3-2). In step 1 and step 2, BP

is performed on T with k + 2 messages. The total complexity is O(k(n − k)). In step 3,

O(k2(n − k)) computations are needed to obtain ĴF and ĥF . It takes O(k3) to solve the

inference problem on a graph of size k. Step 4 takes O(k(n− k)) computations to give the

exact means and step 5 takes O(k2(n−k)) computations to add correction terms. Therefore,

the total complexity is O(k2n).

According to the above results, if the size of the FVS is bounded by a constant, the

means and variances can be computed exactly in linear time. If the size of the FVS is

unbounded but grows much slower than the graph size, e.g. the size of the FVS is O(log n),

the algorithm is still very efficient. For example, based on a hierarchical tree model, we

can add an additional node to each layer, and connect it to every other nodes in the same

layer. In this way, the dependence structure within the same layer can be explicitly modeled.

Figure 3-3 shows an example of such models with 4 layers. For such a model of n nodes,
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Figure 3-3: A hierarchical model with an additional node in each layer

the number of layers is O(log n). The set of additional nodes can be used as an FVS in the

FMP algorithm. The complexity of exact inference on such models is then O(n(log n)2).
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Chapter 4

Approximate Feedback Message

Passing

Though the exact FMP algorithm always gives correct inference results, it can be intractable

when the size of the FVS is large. If the size of the FVS k grows linearly with the graph

size n, the computational complexity of the algorithm will be as large as O(n3), which is the

same order as solving a linear system by Gaussian elimination. In this case, we can make

some approximations to obtain tractable algorithms.

The bottlenecks of the exact FMP algorithm are solving a size k inference problem and

adding k2 correction terms to each of the non-feedback node. One natural way to make an

approximation is to use a set of feedback nodes of bounded size. Then we do calculations

among the non-feedback nodes approximately while solving the size k inference problem

exactly. The resulting algorithm is called the approximate FMP algorithm with a pseudo-

FVS.

In this chapter we describe this approximate algorithm and relevant theoretical results.
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4.1 Approximate FMP with a Pseudo-FVS

An FVS breaks all cycles in a graph. In contrast, we define a pseudo-FVS as a subset of an

FVS that does not break all the cycles. When the size of the FVS is large, the exact FMP

algorithm becomes intractable. Then we can replace the FVS by a pseudo-FVS and make

approximations accordingly. A useful pseudo-FVS has a small size but breaks most cycles

in the graph or most “crucial” cycles in terms of resulting inference error. In this section,

we introduce how to extend the exact FMP algorithm to the approximate FMP algorithm

with a given pseudo-FVS.

Consider a Gaussian graphical model with underlying graph G = (V , E). We use F̃ to

denote a pseudo-FVS, and use T̃ to denote the pseudo-tree obtained by eliminating nodes in

F̃ . Being consistent with the exact FMP algorithm, we call nodes in F̃ the feedback nodes.

A natural extension is to replace BP by LBP in Step 2 and Step 5 of the exact FMP

algorithm (see Figure 3-2) since T̃ still has cycles. However, the convergence and correct-

ness of message passing in T̃ is no longer guaranteed when an arbitrary pseudo-FVS is

chosen. Obtaining convergence and obtaining accurate results are the goals of selecting a

good pseudo-FVS, a topic which is discussed later. Compared to LBP on the entire graph,

the approximate FMP with a pseudo-FVS yields better convergence and accuracy while

the complexity scales favorably with the graph size. Another advantage of the algorithm

is that we can explicitly trade off the accuracy and efficiency by controlling the size of the

pseudo-FVS.

The approximate FMP algorithm with a given pseudo-FVS of size k is summarized in

Figure 4-1. Without loss of generality, we order the nodes such that nodes in F̃ are the first

k nodes. The total complexity of this algorithm in Figure 4-1 depends on the graph size, the

cardinality of the pseudo-FVS, and the number of iterations of LBP within the pseudo-tree,

as described in the following proposition.

Proposition 4.1. The total computational complexity of the approximate FMP algorithm

with a pseudo-FVS in Figure 4-1 is O(km(k + D)), where k is the size of the pseudo-FVS,

m is the total number of edges in the graph, and D is the number of iterations in each round
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Input: information matrix J , potential vector h, and pseudo-FVS F̃ of size k
Output: mean µi and variance Pii of every node i

1. Construct k extra potential vectors: hp = JT̃ ,p
,∀p ∈ F̃ , each corresponding to one

feedback node.

2. Perform LBP on T̃ with JT̃ , hT̃ and the k extra potential vectors. After convergence,

obtain P T̃
ii , µT̃i and k feedback gains g1

i , g
2
i , . . . , g

k
i for each node i in T̃ .

3. Obtain a size-k subgraph with ĴF̃ and ĥF̃ given by

(ĴF̃)pq = Jpq −
∑

j∈N (p)∩T̃
Jpjg

q
j , ∀p, q ∈ F̃

(ĥF̃)p = hp −
∑

j∈N (p)∩T̃
Jpjµ

T̃
j , ∀p ∈ F̃ ,

and solve the inference problem on the small graph by P F̃ = Ĵ−1

F̃ , µF̃ = Ĵ−1

F̃ ĥF̃ .

4. Revise the potential vector on T̃ by

h̃i = hi −
∑

j∈N (i)∩F̃
Jijµ

F̃
j , ∀i ∈ T̃ .

5. Perform another round of LBP with the revised potential vector h̃T̃ to obtain the

means for nodes in T̃ .

Add correction terms to obtain the variances of nodes in T̃ :

Pii = P T̃
ii +

∑

p∈F̃

∑

q∈F̃
gp

i P
F̃
pqg

q
i , ∀i ∈ T̃ .

Figure 4-1: The approximate FMP algorithm with a pseudo-FVS
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of LBP within the pseudo-tree.

Proof. In step 1 and step 2, LBP is performed on T̃ with k + 2 messages. The complexity is

O(kmD). In step 3, O(k2(n− k)) computations are needed to obtain ĴF and ĥF , where n is

the number of nodes in the graph. It takesO(k3) computations to solve the inference problem

on the size-k subgraph. In step 4 and step 5, it takes O(mD) computations to obtain the

means by another round of LBP, and O(k2(n − k)) computations to add correction terms.

The total complexity is thus O(km(k + D)).

Note that this complexity result is for general graphs, which can be very dense graphs or

even complete graphs. If the graphs we consider are sparse, e.g. the number of edges grows

linearly with the number of nodes, the computational complexity is then O(km(k + D)).

4.2 Convergence and Accuracy

In this section, we provide some theoretical results on the convergence and accuracy of the

approximate FMP algorithm with a pseudo-FVS.

For convenience, we first describe the following lemma which is used in our proofs of

Theorem 4.3.

Lemma 4.2. For any nonnegative matrix A, ρ(AT ) ≤ ρ(A), where AT is a principle sub-

matrix of A with column and row indices T , and ρ(·) denotes the spectral radius of a matrix.

Proof. See the proof of corollary 8.1.20 in [19].

Theorem 4.3. Consider a Gaussian graphical model with underlying graph G = (V , E) and

model parameters J and h. If the model is walk-summable, the approximate FMP algorithm

converges with any selection of pseudo-FVS F̃ ⊂ V.

Proof. First we normalize J such that all the diagonal entries equal to one:

J̄ = D−1/2JD−1/2, (4.1)
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where D is a diagonal matrix with the same diagonal as J .

Let R = I − J̄ and (R̄)ij = |Rij|. Then R̄ has zero diagonal and nonnegative entries. We

call R̄ the absolute edge weight matrix.

By Proposition 2.3, a graphical model is walk-summable if and only if ρ(R̄) < 1, where

ρ(R̄) is the spectral radius of the absolute edge weight matrix.

In the approximate FMP algorithm, LBP is performed on the pseudo-tree induced by

T̃ = V\F̃ . The information matrix on the pseudo-tree is JT̃ , which is a submatrix of J . We

define R̄T̃ as the absolute edge weight matrix of the model on T̃ . By simple algebra, we can

see R̄T̃ is the same as R̄T̃ , the submatrix of R̄ corresponding to columns and rows T̃ .

By Lemma 4.2,

ρ(R̄T ) = ρ(R̄T̃ ) ≤ ρ(R̄) < 1 (4.2)

By Proposition 2.5, LBP on T̃ is guaranteed to converge. Except for LBP on T̃ , all

the computations have finite steps for any choice of F̃ . Therefore, the approximate FMP

algorithm converges with any F̃ ⊂ V .

In practice, the approximate FMP algorithm often converges with a proper selection of

pseudo-FVS even if LBP on the entire graph does not converge.

Theorem 4.4. Consider a Gaussian graphical model with parameters J and h. If the ap-

proximate FMP algorithm in Figure 4-1 converges with a pseudo-FVS F̃ , it gives the correct

means and variances for all nodes in F̃ .

Proof. Without loss of generality, we order the nodes such that nodes in F̃ are the first k

nodes, where k is the size of the pseudo-FVS. Then we have

J =




JF̃ J ′M

JM JT̃


 and h =




hF̃

hT̃


 . (4.3)
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By the formula of Schur’s complement,

ĴF̃
∆
= P−1

F̃ = JF̃ − J ′MJ−1

T̃ JM Â 0

ĥF̃
∆
= P−1

F̃ µF̃ = hF̃ − J ′MJ−1

T̃ hT̃ , (4.4)

where PF̃ and µF̃ are the exact covariance matrix and mean vector of nodes in F̃ .

By Proposition 2.2, when LBP converges, it gives the correct means. Applying this

theorem on graph T̃ , we have

gi = J−1

T̃ JT̃ ,i
, ∀i = 1, 2, . . . , k

µT̃ = J−1

T̃ hT̃ , (4.5)

where gi is the feedback gain and µT̃ is the partial mean as described in Figure 4-1. These

quantities are exact after convergence.

Substituting (4.5) into (4.4), we have

ĴF̃ = JF̃ − J ′M [g1,g2, . . . ,gk]

ĥF̃ = hF̃ − J ′MµT̃ . (4.6)

This is equivalent to

(ĴF̃)pq = Jpq −
∑

j∈N (p)∩T̃
Jpjg

q
j , ∀p, q ∈ F̃

(ĥF̃)p = hp −
∑

j∈N (p)∩T̃
Jpjµ

T̃
j , ∀p ∈ F̃ , (4.7)

which is the same formula as in Step 3 in Figure 4-1. By solving the small inference problem

on F̃ in Step 3, we obtain the exact means and variances for all nodes in F̃ .

Theorem 4.5. Consider a Gaussian graphical model defined on a graph G = (V , E) with

model parameters J and h. Assume the approximate FMP algorithm in Figure 4-1 converges
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with a pseudo-FVS F̃ . Then the calculated mean of any node in T̃ = V\F̃ is correct; the

calculated variance of node i in T̃ equals the sum of all the backtracking walks of node i

within T̃ plus all the self-return walks of node i that visit at least one node in F̃ .

Proof. Without loss of generality, we assume the information matrix J has been normalized

to have unit diagonal. We order the nodes such that nodes in F̃ are the first k nodes, where

k is the size of F̃ . We have

J =




JF̃ J ′M

JM JT̃


 and h =




hF̃

hT̃


 . (4.8)

Following the same steps as in the proof of Theorem 3.1, we have

µT̃ = J−1

T̃ (hT̃ − JMµF̃). (4.9)

By Proposition 4.4, µF̃ is computed exactly in Step 3 in Figure 4-1. By Theorem 2.2,

LBP on T̃ gives the exact result of J−1

T̃ h∗ for any potential vector h∗. Regarding hT̃ −JMµF̃

as h∗, we can obtain exact µT̃ after another round of LBP in Step 5. Therefore, the means

of all nodes in T̃ are exact.

Similarly, following the steps in the proof of Theorem 3.1, we have

PT̃ = J−1

T̃ + (J−1

T̃ JM)PF̃(J−1

T̃ JM)′. (4.10)

The exact variance of node i ∈ T̃ equals the sum of all the self-return walks of node i

according to (2.22). We categorize these walks into two classes: self-return walks of node i

within T̃ , and self-returns walks that visit at least one node in F̃ .

The diagonal of J−1

T̃ captures exactly the first class of walks. Then the second term in

the right-hand side of (4.10) corresponds to the sums of the second class of walks. Since

J−1

T̃ JM and PF̃ are obtained exactly by the algorithm according to the proof of Theorem 4.4,

the sums of the second class of walks are exact. We thus only need to study the accuracy of

the approximation to the first term computed by our algorithm.
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By Proposition 2.6, LBP on T̃ gives the sums of all the backtracking walks after conver-

gence. Therefore, the calculated variance result of node i in T̃ equals to the sum of all the

backtracking walks of node i within T̃ plus all the self-return walks of node i that visit at

least one node in F̃ .

From the previous two theorems, we can see that the approximate FMP algorithm with

a pseudo-FVS always gives the exact means for all nodes after convergence. It captures

more walks than LBP in calculating the variances: for nodes in F̃ , it captures all self-return

walks while LBP only captures the backtracking walks; for nodes in T̃ , in addition to the

backtracking walks it also captures the non-backtracking self-return walks that visit F̃ while

LBP does not captures any such walks.

Corollary 4.6. Assume a graphical model is walk-summable. F̃1, F̃2, . . . , F̃k are pseudo-

FVS satisfying ∅ 6= F̃1 ⊆ F̃2 ⊆ · · · ⊆ F̃k and F ⊇ F̃k is an FVS. Then WLBP
i ⊆ W F̃1

i ⊆
W F̃2

i ⊆ . . . ⊆ W F̃k
i ⊆ WF

i for any node i in the graph. Here WLBP
i is the set of walks

captured by LBP for calculating the variance of node i; W
F̃j

i is the set of walks captured by

the approximate FMP algorithm with pseudo-FVS F̃j; and WF
i is the set of walks captured

by the exact FMP algorithm with FVS F .

Proof. All of the algorithms here converge since the model is walk-summable. When we

increase the set of feedback nodes, we miss fewer walks needed for the exact variances.

Theorem 4.7. Consider an attractive Gaussian graphical model with graph G = (V , E). Let

F̃1 ⊆ F̃2 ⊆ · · · ⊆ F̃k ⊆ F denote the pseudo-FVS (FVS), and PLBP
i , P F̃1

i , . . ., P F̃k
i , PF

i

denote the corresponding variances calculated for node i by LBP, approximate FMP and the

exact FMP algorithm. Pi is the exact variance of node i. We have PLBP
i ≤ P F̃1

i ≤ P F̃2
i ≤

· · · ≤ P F̃k
i ≤ PF

i = Pi for any node i in V.

Proof. By Proposition 2.4, a valid Gaussian graphical model is walk-summable if it is at-

tractive. Then all the algorithms mentioned in the theorem are guaranteed to converge.

By Corollary 4.6, WLBP
i ⊆ W F̃1

i ⊆ W F̃2
i ⊆ . . . ⊆ W F̃k

i ⊆ WF
i for any node i, where we

follow the same notations as in Corollary 4.6. Since all walks have nonnegative weight in an
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attractive model, the sum of walks of a smaller set is less than or equal to the sum of walks

of a larger set.

Therefore,

PLBP
i ≤ P F̃1

i ≤ P F̃2

i ≤ · · · ≤ P F̃k

i ≤ PF
i = Pi, ∀i ∈ V . (4.11)

4.3 Finding a Pseudo-FVS of Bounded size

As we have discussed in previous chapters, the problems of divergence and inaccuracy of

LBP are due to the existence of cycles. By removing a set of feedback nodes from the graph,

we can reduce the number of cycles. One goal of choosing a pseudo-FVS is to ensure that

LBP converges on the remaining pseudo-tree; the other goal is to obtain smaller errors.

Breaking all the cycles by using an FVS will achieve both goals at the same time since the

convergence and correctness of the exact FMP algorithm are both guaranteed. However,

it may lead to intractable algorithms when the FVS is large. This motivates us to find a

good pseudo-FVS whose removal breaks most cycles or most crucial cycles in the graph. In

addition, by adjusting the size of the pseudo-FVS, we can explicitly trade off the accuracy

and efficiency. In this section we discuss two algorithms motivated by these two goals.

4.3.1 Selecting a Pseudo-FVS for Convergence Purpose

Consider a Gaussian graphical model of n nodes with information matrix J and potential

vector h. Without loss of generality, we assume J has been normalized to have unit diagonal.

Let R̄ denote the matrix taken the entrywise absolute values of R = I−J . By Proposition

2.5, ρ(R̄G) < 1 is a sufficient condition for LBP to converge on graph G, where ρ(·) denotes the

spectral radius of a matrix. Hence the problem reduces to that of removing the minimum

number of nodes such that ρ(R̄T̃ ) < 1 for the remaining graph T̃ . This problem can be

written as
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minimize k

subject to (1− ε)I −XR̄X º 0

(1− ε)I + XR̄X º 0 (4.12)
∑

i

Xii = n− k

X is an n× n diagonal matrix, Xii ∈ {0, 1},

where ε is a small positive number.

Alternatively, we can bound the number of nodes to remove and minimize ρ(R̄T̃ ) for the

remaining graph T̃ . This problem can then be written as

minimize τ

subject to τI −XR̄X º 0

τI + XR̄X º 0 (4.13)
∑

i

Xii ≥ n− k

X is a n× n diagonal matrix, Xii ∈ {0, 1}.

Since directly solving this problem is intractable, we make several relaxations to obtain a

simple algorithm.

In [19] the following bound on the spectral radius of a nonnegative matrix is given:

min
i

∑

j

R̄ij ≤ ρ(R̄) ≤ max
i

∑

j

R̄ij.

Instead of minimizing the spectral radius, we minimize its upper bound. Then we have

the following problem formulation:
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Input: information matrix J and the maximum size k of the pseudo-FVS
Output: a pseudo-FVS F̃

1. Let F̃ = ∅ and normalize J to have unit diagonal.

2. Repeat until |F̃ | = k or the remaining graph is empty.

(a) Clean up the graph by eliminating all the tree branches.

(b) Update the scores s(i) =
∑

j∈N (i) |Jij|.
(c) Put the node with the largest score into F̃ and remove it from the current

graph.

Figure 4-2: Algorithm 1 for selecting a pseudo-FVS

minimize τ

subject to 1T XR̄X ≤ τ1
∑

i

Xii ≥ n− k

X is a n× n diagonal matrix, Xii ∈ {0, 1}.

We further simplify this problem by a greedy heuristic: we select one feedback node at

each iteration. Node i with the largest score s(i) =
∑

j R̄ij is selected at each iteration. Then

we remove node i from the graph and put it into F̃ . We continue the same procedure on the

remaining graph until the maximum allowed size k of F̃ is reached or the remaining graph

does not have any cycles. The algorithm is summarized in Figure 4-2.

4.3.2 Selecting a Pseudo-FVS for Accuracy Purpose

Consider a Gaussian graphical model with n nodes, information matrix J and potential vector

h. Without loss of generality, we assume J has been normalized to have unit diagonal. We

want to find a pseudo-FVS F̃ of bounded size k to give the smallest error. Let R = I − J

be the edge weight matrix. Rij is the weight of a single-step walk from i to j or from j to

i. We define the error as the sum of the absolute errors of the means and variances for all
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nodes. Namely,

ε =
∑

i∈V
|P̂ii − Pii|+

∑

i∈V
|µ̂i − µi|,

where P̂ii and µ̂i are the variances and means computed by some algorithms; Pii and µi are

the exact variances and means.

By Proposition 2.2 and Theorem 4.4, 4.5, the means by LBP and by the approximate

FMP are both correct for all nodes after convergence. Hence we only need to consider the

errors of the variances.

From a walk-sum perspective,

ε(LBP ) =
∑

i∈V
|φ(i

NB−→ i)|, (4.14)

where ε(LBP ) is the error given by LBP and φ(i
NB−→ i) denotes the sum of all non-

backtracking self-return walks of node i.

Let ε(p) denote the error given by the approximate FMP with a single feedback node p.

At each iteration, we choose a single node p with smallest error ε(p), namely,

p∗ = argmin
p∈V

ε(p). (4.15)

This is equivalent to

p∗ = argmax
p∈V

ε(LBP )− ε(p), (4.16)

since ε(LBP ) does not depend on the choice of p.

By Theorem 4.5, when we use node p as the single feedback node, the variance of p is

correct while the variances of other nodes lack the non-backtracking self-return walks within

V\p. Then

ε(p) =
∑

i∈V\p
|φ(i

NB in V\p
−−−−−−→ i)|, (4.17)

where φ(i
NB in V\p
−−−−−−→ i) denotes the sum of non-backtracking self-return walks of node i within
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V\p. Then

ε(LBP )− ε(p) = |φ(p
NB−→ p)|+ ∑

i∈V\p
(|φ(i

NB−→ i)| − |φ(i
NB in V\p
−−−−−−→ i)|). (4.18)

Until now, we have not made any approximations. Maximizing the above function of p

gives the best p to choose as a single feedback node at each iteration. However, the exact

function is difficult to deal with, and we must make approximations. For simplicity, we

assume the model is attractive so that the weight of all walks are nonnegative. Then

ε(LBP )− ε(p) = φ(p
NB−→ p) +

∑

i∈V\p
φ(i

NB visit p−−−−−−→ i), (4.19)

where φ(i
NB visit p−−−−−−→ i) denotes the sum of all the non-backtracking self-return walks of node

i that visit p at least once.

All walks involved in the above formula are non-backtracking self-return walks and they

all visit p at least once. A complete set of such walks is difficult to capture. Instead, we

can consider a subset of such walks, i.e. all cycles passing through p. Then we replace the

left hand side of (4.19) by
∑

C∈Cp
w(C)l(C), where Cp is the set of all cycles passing through

node p, w(C) is the weight of a cycle C, and l(C) is the length of a cycle C.

Enumerating all the cycles is sometimes intractable since it involves global structure of

the graph. We approximate the lengths and weights of the cycles by some simplifications:

we use the average length l to replace l(C); the weight of a cycle passing through node p

and its neighbors j and q can be approximated by rl−2RjpRqp, where r is the average weight

of the edges; if we clean up all the tree branches (see Chapter 2 for graph cleaning) before

we select a feedback node, we can assume there exists a cycle passing through any pair of

p’s neighbors. Therefore, the objective function becomes
∑

j,q∈N (p),j<q rl−2RjpRqpl. Thus we
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Input: information matrix J and the maximum size k of the pseudo-FVS
Output: a pseudo-FVS F̃

1. Let F̃ = ∅ and normalize J to have unit diagonal.

2. Repeat until |F̃ | = k or the remaining graph is empty.

(a) Clean up the graph by eliminating all the tree branches.

(b) Update the scores s(i) =
∑

l,k∈N (i),l<k |JilJik|.
(c) Put the node with the largest score into F̃ and remove it from the current

graph.

Figure 4-3: Algorithm 2 for selecting a pseudo-FVS

can formulate an alternative optimization problem as

p̃∗ = argmax
p∈V

∑

j,q∈N (p),j<q

rl−2RjpRqpl (4.20)

= argmax
p∈V

∑

j,q∈N (p),j<q

|JjpJqp|. (4.21)

The algorithm is summarized in Figure 4-3.

4.3.3 Comments

The two algorithms are motivated from convergence and accuracy purposes respectively.

Both of the algorithms tend to choose nodes with large edge weights as feedback nodes.

Actually, the score function of Algorithm 1 is equivalent to (
∑

j∈N (i) |Jij|)2 =
∑

j,q∈N (i) |JijJiq|,
which is very similar to the score function of s(i) =

∑
j,q∈N (i),j<q |JijJiq| in Algorithm 2.

This similarity is consistent with the fact that when F̃ becomes an FVS, the two goals—

convergence and accuracy are achieved at the same time.

The complexity of the two algorithms are both O(km), where m is the number of edges

and k is the size of the pseudo FVS. These two algorithms are very fast in practice since

they only involve simple computations.

An adaptive way to select a pseudo-FVS is also favorable: we can first use the criterion
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for convergence and then switch to the criterion for accuracy after convergence is guaranteed.

Finding a proper pseudo-FVS is important to obtain convergent and accurate inference

algorithms. We will see later in Chapter 5 that there is a huge performance difference

between a good selection and a bad selection of F̃ .

4.4 Regional FMP Algorithm

When the size of the FVS F of a Gaussian graphical model is large, we can use the approxi-

mate FMP algorithm with a pseudo FVS, in which an inference problem within the feedback

nodes is solved exactly while LBP in the pseudo-tree gives approximate results. There is

an alternative way to make approximations: we still use the full FVS F , and perform BP

exactly in the tree part while solving the inference problem on the FVS approximately.

When we use a full FVS of large size k, there are two bottlenecks in the computational

complexity. First, solving the inference problem on the feedback nodes is difficult because

of the large size. Second, we need to add k2 correction terms to each non-feedback node.

For the first problem, we can use a sparse “thinned” graph instead of a complete graph of

the feedback nodes. For the second problem, we can only add a small number of correction

terms to each non-feedback node. There are many ways to construct a “thinned” graph and

to choose correction terms. Here we propose the regional FMP algorithm, which chooses the

“thinned” graph of the feedback nodes and correction terms based on a distance measure on

the graph.

The regional FMP algorithm takes into account the influence region of each feedback

node. Roughly speaking, a feedback node tends to have more influence on the nearby nodes,

and thus we choose the correction terms accordingly. In addition, two feedback nodes with

overlapping influence regions are considered to have strong interaction, and thus we keep

the edge between them in our “thinned” graph of the feedback nodes. Choosing a suitable

influence region for each feedback node is an important step, which is still an ongoing research

problem. In the section, we describe the regional FMP algorithm assuming we are given a

set of feedback nodes and their influence regions.
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Figure 4-4(a) shows the underlying graph structure of a Gaussian graphical model. The

bigger red circles represent the given feedback nodes while the smaller black circles represent

the non-feedback nodes. The influence region of each feedback node is represented by the

big pink circle around it. Nodes covered in a pink circle are said to be within the influence

region of a feedback node. In the regional FMP algorithm, a feedback node only adds

correction terms to nodes in its influence region. Figure 4-4(b) shows the graph formed by

the feedback nodes. A solid red line denotes an edge between two feedback nodes having

strong interaction. The graph with only these edges is called the backbone graph, which is

denoted by B. The backbone graph is then our “thinned” graph for solving the inference

problem on the feedback nodes. Note that there are also other ways to define the “thinned”

backbone graph JB. The best JB depends on the parameters and structure of JF . Here we

just provide one way to make approximations.

The regional FMP algorithm for the model in Figure 4-4(a) has the following steps:

Step 1: Construct 5 extra potential vectors: ∀p ∈ F ,hp = JT ,p, each corresponding to

one feedback node.

Step 2: Perform BP on T to obtain P T
ii = (J−1

T )ii and µTi = (J−1
T hT )i for each node

i ∈ T . With the 5 extra potential vectors, calculate the feedback gains g1
i = (J−1

T h1)i, g
2
i =

(J−1
T h2)i, . . . , g

5
i = (J−1

T h5)i for each node i ∈ T by BP.

Step 3: Obtain a size-5 graph defined on the backbone graph with model parameters ĴB

and ĥB given by

(ĴB)pq =





Jpq −∑
j∈N (p)∩T Jpjg

q
j , ∀p, q ∈ F , (p, q) ∈ B

0 ∀p, q ∈ F , (p, q) /∈ B

(ĥB)p = hp −
∑

j∈N (p)∩T
Jpjµ

T
j , ∀p ∈ F . (4.22)

Step 4: Perform BP (LBP) within the backbone graph with information matrix ĴB and

potential vector ĥB. After convergence, we obtain the approximate variances P̄ii, µ̄i, ∀i ∈ F
and P̄ij, ∀(i, j) ∈ B.
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Revise the potential vector on T by

h̃i = hi −
∑

j∈N (i)∩F
Jijµ̄j, ∀i ∈ T .

Step 5: Another round of BP with the revised potential vector h̃T gives the approximate

means of nodes on T .

Add correction terms to obtain the approximate variances of nodes in T :

Pii = P T
ii +

∑

p∈Fi

∑

q∈Fi

gp
i P̄pqg

q
i , ∀i ∈ T ,

where Fi denotes the set of the feedback nodes whose influence region covers node i. If

feedback nodes p and q both cover node i, they will have overlapping influence region so that

p and q are neighbors in the backbone graph. Thus any P̄pq needed here has been calculated

in Step 4.

The following proposition gives the complexity of the algorithm.

Proposition 4.8. In the regional FMP algorithm, if the influence region of each feedback

node only overlaps the influence regions of a bounded number of other feedback nodes, the

computational complexity of the algorithm is O(k(n + D)), where n is the total number of

nodes, k is the size of the FVS, and D is the number of iterations of messages passing within

the backbone graph.

Proof. In Step 1 and Step 2, it talks O(k(n − k)) to perform BP with multiple potential

vectors on T . In step 3 the complexity is O(kn) to obtain the parameters of the backbone

graph. In Step 4, it takes O(kD) computations to perform LBP within the backbone graph.

In Step 5, another BP on T takes O(n) to compute the means. The complexity of adding

correction terms for the variances is O(kn) since each feedback node only share influence

region with a bounded number of other feedback nodes. Therefore, the total complexity is

O(k(n + D)).
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(a) A graphical model with the influence regions of the feedback nodes

(b) The backbone graph of the feedback nodes
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Chapter 5

Numerical Results

In Chapter 3 we have proved that the FMP algorithm with an FVS always gives the correct

variances and means for all nodes. If the size of the FVS is bounded or grows slowly with

the size of the graph, this algorithm is efficient. When the size of the FVS is large, we can

use a pseudo-FVS instead. In this chapter, we give numerical results for the performance of

the approximate FMP algorithm.

Graphical models defined on grid graphs are widely used in computer vision, oceanogra-

phy/seismic data modeling, and many other applications. Grid graphs are sparse since each

node is only connected to at most four neighboring nodes. However, inference problems on

grid graphs cannot be solved in linear time exactly due to the existence of many cycles of

various lengths. In addition, it is shown that the size of FVS for a grid graph grows linearly

with the number of nodes on the grid [27]. Therefore, we need to select a pseudo-FVS of

small size.

In our simulations in this chapter, we consider l × l grid graphs with different values of

l. The graph size is then n = l2. Given the size of a grid graph, we randomly generate

an information matrix J , which is sparse with respect to the graph. Its nonzero entries

are drawn from an i.i.d. uniform distribution ranging between −1 and 1. We ensure J is

positive definite by adding proper diagonal values. We also generate a potential vector h,

whose entries are drawn from an i.i.d. uniform distribution ranging between −1 and 1. In
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each experiment, we have a positive definite information matrix J and a potential vector

h ∈ [−1, 1]n. Without loss of generality, we normalize the information matrix to have unit

diagonal.

In this chapter, we show numerical results for the convergence and accuracy of the ap-

proximate FMP algorithm. We also compare the performance of the algorithm with different

pseudo-FVS.

5.1 Convergence of the Approximate FMP Algorithm

In Figure 5-1 and 5-2, we show simulation results for a 10 × 10 grid graph. Using pseudo-

FVS selection algorithm 1 for convergence purpose (see Figure 4-2), we choose one feedback

node with the largest score at each step. The remaining graph and its corresponding spectral

radius ρ(R̄) are shown in the figures, where R̄ takes the entrywise absolute values of R = I−J

for a normalized J . Note that in the selection algorithm, all tree branches are cleaned up at

each iteration so that there are no degree-one nodes in the remaining graph.

LBP does not converge on the original graph. The corresponding spectral radius is

ρ(R̄) = 1.0477 as shown in Figure 5-1. When one feedback node is chosen, the spectral

radius corresponding to the remaining graph becomes 1.0415. After removing one more

node from the graph, the spectral radius becomes 0.97249. As we have discussed in Chapter

4, ρ(R̄) < 1 is a sufficient condition for LBP to converge on the remaining graph. Thus our

approximate FMP algorithm also converges with the two feedback nodes. Since the spectral

radius is non-increasing when more nodes are removed, our approximate FMP algorithm

still converges if we choose more feedback nodes. In order to give a clear picture of how the

algorithm chooses the feedback nodes, we show more results in Figure 5-2.

In all of our experiments on 10× 10 grid graphs, we observe that by choosing only a few

nodes (at most three empirically) as pseudo-FVS, we can obtain convergence even if LBP on

the original graph diverges. Convergence is usually a nontrivial issue for many distributed

algorithms. This approach may inspire more effective algorithms to improve convergence.

In our pseudo-FVS selection algorithm 1, we actually use an upper bound on the spectral
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Figure 5-1: Number of removed nodes and the spectral radius—1
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Figure 5-2: Number of removed nodes and the spectral radius—2
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(a) 10× 10 grid graph
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(b) 20× 20 grid graph
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(c) 40× 40 grid graph
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(d) 80× 80 grid graph

Figure 5-3: Number of selected feedback nodes v.s. the spectral radius and its bound

radius instead of computing the exact value. In Figure 5-3 we show how the spectral radius

and its upper bound decrease when more and more nodes are selected as feedback nodes.

We can see that the spectral radius quickly decreases to be less than one, which is sufficient

to give a convergent algorithm.

5.2 Accuracy of the Approximate FMP Algorithm

In this section, we show numerical results for the inference errors. On each grid graph, LBP

and the approximate FMP algorithm with two different sets of feedback nodes are performed.
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(b) Iterations versus mean errors

Figure 5-4: Inference errors of a 10× 10 grid graph
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(a) Iterations versus variance errors
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(b) Iterations versus mean errors

Figure 5-5: Inference errors of a 10× 10 grid graph

One set has k = dlog ne feedback nodes while the other has k =
√

n feedback nodes. The

feedback nodes are selected by pseudo-FVS algorithm 2 described in Figure 4-3. The x-axis

shows the number of iterations in the message passing steps. The y-axis represents the

average absolute errors of all nodes for both variances and means on a logarithmic scale. We

use “k-FVS” to denote the approximate FMP algorithm with k feedback nodes.

In Figure 5-4 to 5-8, numerical results are shown for 10×10, 20×20, 40×40 and 80×80

grids respectively. Except for the case shown in Figure 5-4, direct LBP fails to converge on all

graphs. With k = dlog ne feedback nodes, the approximate FMP algorithm converges for all

grid graphs and gives much better approximations than LBP in fewer iterations. In Figure

5-4 where LBP converges on the original graph, we obtain much less error for the variances
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(a) Iterations versus variance errors
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(b) Iterations versus mean errors

Figure 5-6: Inference errors of a 20× 20 grid graph
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(b) Iterations versus mean errors

Figure 5-7: Inference errors of a 40× 40 grid graph
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Figure 5-8: Inference errors of an 80× 80 grid graph
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and faster convergence rate using our algorithm. In Figure 5-5 to 5-8, direct LBP does not

give any meaningful results while our algorithm gives inference results with small errors.

When k =
√

n feedback nodes are used, we obtain even better approximations but with

more computations in each iteration. By performing many more experiments, k = dlog ne
feedback nodes seem to be sufficient to give a convergent algorithm and good approximations.

The complexity of such a method is thus O(n log2 n).

5.3 Choosing a Suitable FVS

In this section, we compare two pseudo-FVS selection algorithms motivated by convergence

and accuracy purposes respectively. These two algorithms are similar in the sense that both

of them favor nodes with larger absolute edge weights. In our simulations, the performances

are also comparable. This may give us an impression that the size of the pseudo-FVS matters

much more than the selection criteria. Actually, numerical results show that the approximate

FMP algorithm does not give satisfactory results if we choose a “bad” pseudo-FVS.

We use both algorithms to choose various numbers of feedback nodes for 20 × 20 and

40 × 40 graphs respectively. In Figure 5-9, we plot the number of different nodes obtained

by the two algorithms. We observe that the algorithms give similar pseudo-FVS, where only

about 10% of the selected nodes are different.

In Figure 5-12 we perform the approximate FMP algorithm with a badly selected pseudo-

FVS. We can see that LBP, 7-FVS and 40-FVS algorithms all fail to converge. In Figure

5-13 the approximate FMP algorithm is performed with a random pseudo-FVS. In this

graphical model, LBP, 7-FVS and 40-FVS algorithms all converge. However, 7-FVS and

40-FVS algorithms give almost the same results as LBP, even though more computations

are involved.

These unsatisfactory performances are neither surprising nor discouraging. Actually they

suggest that when a suitable set of feedback nodes are selected, we indeed take advantages of

the graph structure and model parameters. This is also the high level idea of our algorithm.

As a summary of this chapter, the numerical results seem to suggest that the approximate
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Figure 5-9: Comparison of the two FVS selection algorithms

FMP algorithm with only a small number of well selected feedback nodes can give convergent

and accurate inference results in a tractable way.
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Figure 5-10: The spectral radius and the remaining graph

74



0 2 4 6 8 10 12 14 16 18
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of selected feedback nodes

V
al

ue

 

 
spectral radius
bound of spectral radius

(a) 10× 10 grid graph

0 2 4 6 8 10 12 14 16 18
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of selected feedback nodes

V
al

ue

 

 

spectral radius
bound of spectral radius

(b) 20× 20 grid graph

Figure 5-11: Number of selected feedback nodes v.s. the spectral radius
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(a) Iterations versus variance errors
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(b) Iterations versus mean errors

Figure 5-12: Inference errors with a bad selection of feedback nodes
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Figure 5-13: Inference errors with a random selection of feedback nodes
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Chapter 6

Conclusions

In this thesis we have developed the feedback message passing algorithm where we identify

a set of feedback nodes. The high level idea of the algorithm is to use a special message

passing scheme for the feedback nodes while using standard BP for other nodes. The feedback

message passing algorithm solves inference problems in a Gaussian graphical model in linear

time if the graph has a small FVS. For a graph with a large FVS, the approximate feedback

message passing algorithm can be used instead. By carefully choosing a small number of

feedback nodes, accurate inference results can be obtained efficiently.

In this chapter, we outline the contributions of this thesis and propose future research

directions.

6.1 Contributions

Chapter 3.

We introduced the exact FMP algorithm. A special message update scheme is used for the

feedback nodes while standard BP is used for the non-feedback nodes. There are two rounds

of message passing in the FMP algorithm, where the complexity depends on the number of

feedback nodes.

First we describe the algorithm for the single FVS case where a single node can break all
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the cycles in the graph. In this case exact inference results can be obtained in linear time.

We also give a walk-sum analysis of the correctness of the algorithm.

Then we consider the more general case in which the FVS of a graph has multiple nodes.

The complexity for exact inference is O(k2n), where k is the size of the FVS and n is the

size of the graph.

We show that for a class of graphs with small FVS, inference problems can be solved

efficiently by the FMP algorithm. This essentially enlarges the class of graphical models

for which exact inference results can be obtained efficiently—from tree-structured graphs to

graphs with small FVS.

Chapter 4.

Beyond the class of graphs with small FVS, the approximate FMP algorithm can be applied

to graphs with large FVS. We have discussed two ways of making approximations in Chapter

4.

First we discuss the approximate FMP algorithm with a pseudo-FVS, where a pseudo-

FVS is a subset of an FVS that does not break all the cycles. Compared to the exact FMP

algorithm, the feedback nodes use the same message update scheme, while BP is replaced

by LBP for other nodes.

Then we develop some theoretical results. The approximate algorithm is guaranteed to

converge if the graphical model is walk-summable. When the algorithm converges, the means

obtained by the approximate FMP algorithms capture all necessary walks while the variances

capture all backtracking walks plus non-backtrack walks that visit the pseudo-FVS. Different

pseudo-FVS selection criteria are proposed for convergence purpose and accuracy purpose

based on the theoretical results.

We also briefly introduce the regional FMP algorithm as an alternative way to make

approximations.
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Chapter 5.

In this chapter, we show experimental results for the convergence and accuracy of the ap-

proximate FMP algorithm. We compare the performance of the algorithm with different

pseudo-FVS. The numerical results seem to suggest that with only a small number of well

selected feedback nodes the algorithm can give accurate inference results.

6.2 Future Research

In this section, we propose several future research directions related to the FMP algorithm.

Improving the Accuracy of Variance Estimate

When the exact FMP algorithm becomes intractable with large FVS, approximations must be

made. In this thesis, we have discussed the approximate FMP algorithm with a pseudo-FVS

and the regional FMP algorithm. Though these approximations work well in practice, there

is still much space for improvement. For instance, there may be better criteria to choose a

pseudo-FVS if a tight error bound of variance estimation can be found. In the regional FMP

algorithm, how to decide the influence regions and how to obtain the “thinned” backbone

graph are still open questions.

In addition, we can also propose other approximation schemes, which could be combina-

tions of previous algorithms and FMP based algorithms.

Computing the Partition Function

Besides the marginal distributions and the most likely state, computing the partition function

is another important inference problem for graphical models. For a Gaussian distribution of

p(x) =
1

Z
exp{−1

2
xT Jx + hTx},

the partition function has a closed form of Z = exp{1
2
n log(2π)− 1

2
log det(J) + 1

2
hT J−1h}.
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It is not difficult to show that estimating the determinant of the information matrix J

accurately is essential to obtain an accurate estimation of the partition function. In [23]

the authors use an “orbit-product” framework to analyze the determinant approximation

by LBP. It is a natural extension to develop an FMP based algorithm to approximate the

determinant. It is interesting to see whether there are any physical interpretations of this

kind of approximations as well.

Learning Graphs with Small FVS

In practice our observations of real data are often noisy. The internal structure can be

blurred by the noises. A model with simple structure but good generalization power is de-

sirable. Simple structure often suggests efficient inference algorithms. For instance, learning

a graphical model of tree structure has been studied [7]. Inference results in tree-structured

models can be obtained efficiently by BP.

As we mentioned before, the exact FMP algorithm can solve inference problems of graphs

with small FVS efficiently. Thus we have enlarged the class of “simple” models for structure

learning. This raises a natural problem of learning a graph with a small FVS that best

approximates the empirical distribution. More specifically, we can fix the size of the FVS

and learn the best graph structure. Tree-structured graphs can be considered as a special

case of graphs with 0-size FVS. It is still an open problem how to find the best structure if

the FVS is not known a priori.
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Appendix A

An Example of the FMP Algorithm

A.1 BP on a Chain

In this section, we use an example to illustrate the FMP algorithm. We start with a Markov

chain, whose inference can be solved by BP exactly. Then we add an extra edge between

the first node and the last node on the chain to obtain a single loop of the same size. We

apply the FMP algorithm on this loop and compare the messages in the loop with the BP

messages in the chain.

The chain graph of n nodes is shown in Figure A-1. The model parameters are J and

h. The goal is to compute the mean µi = (J−1h)i and variance Pii = (J−1)ii for each

node i. Running BP on the chain is equivalent to performing forward message passing and

backward message passing simultaneously. We describe the algorithm as follows. For clarity

the message update rules are put into boxes.

Figure A-1: A chain graphical model
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Figure A-2: A single loop graphical model

1. Forward Message Passing

• Initialize

∆J1→2 = −J12J
−1
11 J12 (A.1)

∆h1→2 = −J12J
−1
11 h1 (A.2)

• For i = 2, 3, . . . , n− 1

∆Ji→i+1 = KF
i Ji,i+1 (A.3)

∆hi→i+1 = KF
i (hi + ∆hi−1→i), (A.4)

where KF
i = −Ji,i+1(Jii + ∆Ji−1→i)

−1.

2. Backward Message Passing

• Initialize

∆Jn→n−1 = −Jn,n−1J
−1
nn Jn,n−1 (A.5)

∆hn→n−1 = −Jn,n−1J
−1
nn hn (A.6)

• For i = n− 1, n− 2 . . . , 2

∆Ji→i−1 = KB
i Ji,i−1 (A.7)

∆hi→i−1 = KB
i (hi + ∆hi+1→i), (A.8)

where KB
i = −Ji,i−1(Jii + ∆Ji+1→i)

−1.
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3. Calculating node marginals

For i = 1, 2, . . . , n,

Pii = (Jii + ∆Ji−1→i + ∆Ji+1→i)
−1 (A.9)

µi = Pii(hi + ∆hi−1→i + ∆hi+1→i), (A.10)

where ∆J0→1, ∆Jn+1→n, ∆h0→1, ∆hn+1→n are zeros.

The complexity of the algorithm is O(n). The exact inference results are computed after

the forward message passing step and the backward message passing step. In the two steps,

4(n− 4) messages are updated.

A.2 The FMP Algorithm on a Single Loop

For a single loop with Gaussian parameters, LBP may not converge. Even when it converges,

it gives inaccurate variances. By using the FMP algorithm, exact inference on a loop is almost

as efficient as on a chain. More specifically, only 8(n− 2) messages in total are updated for

a loop of length n, comparing with 4(n− 1) messages in BP on a chain of the same size.

A loop of length n is shown in Figure A-2. Any node on the loop forms a feedback vertex

set by itself, since the removal of any node breaks the loop and leaves a chain. Without loss

of generality, we choose node 1 as the feedback node. The FMP algorithm can be interpreted

as performing two rounds of message passing. Both counterclockwise and clockwise messages

are passed simultaneously in each round.
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1. First Round of Message Passing

(a) Counterclockwise Message Passing

• Initialize

∆JT2→3 = −J23J
−1
22 J23 (A.11)

∆hT2→3 = −J23J
−1
22 h2 (A.12)

∆h1
2→3 = −J23J

−1
22 J12 (A.13)

• For i = 3, 4, . . . , n− 1

∆JTi→i+1 = Kα
i Ji,i+1 (A.14)

∆hTi→i+1 = Kα
i (hi + ∆hTi−1→i) (A.15)

∆h1
i→i+1 = Kα

i ∆h1
i−1→i, (A.16)

where Kα
i = −Ji,i+1(Jii + ∆JTi−1→i)

−1.

(b) Clockwise Message Passing

• Initialize

∆JTn→n−1 = −Jn,n−1J
−1
nn Jn,n−1 (A.17)

∆hTn→n−1 = −Jn,n−1J
−1
nn hn (A.18)

∆h1
n→n−1 = −Jn,n−1J

−1
nn J1n (A.19)

• For i = n− 1, n− 2, . . . , 3

∆JTi→i−1 = Kβ
i Ji,i−1 (A.20)

∆hTi→i−1 = Kβ
i (hi + ∆hTi+1→i) (A.21)

∆h1
i→i−1 = Kβ

i ∆h1
i+1→i, (A.22)

where Kβ
i = −Ji,i−1(Jii + ∆JTi+1→i)

−1.
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(c) Calculating local information

For i = 2, 3, . . . , n,

P T
ii = (Jii + ∆JTi−1→i + ∆JTi+1→i)

−1 (A.23)

g1
i = P T

ii (∆h1
i−1→i + ∆h1

i+1→i), (A.24)

where ∆J1→2, ∆Jn+1→n, ∆h1
1→2, ∆h1

n+1→n are zeros.

2. Inference at the Feedback Node 1

Just for node 1’s neighbors node 2 and node n, we calculate the corresponding entries

in µT by

µT2 = P T
22(h2 + ∆hT3→2) (A.25)

µTn = P T
nn(hn + ∆hTn−1→n), (A.26)

where P T
22, ∆hT3→2 and ∆hTn−1→n have been calculated.

Node 1 then compute its own exact variance and exact mean by

P11 = (J11 − J12g
1
2 − J1ng1

n)−1 (A.27)

µ1 = P11(h1 − J12µ
T
2 − J1nµ

T
n ), (A.28)

where g1
2 and g1

n are computed in Step 1c.

The feedback node 1 revises the node potentials of its neighbors as

h̃2 = h2 − J12µ1 (A.29)

h̃n = hn − J1nµ1. (A.30)

Node 1 also creates a message of its own exact variance P11 and spreads the message

to other nodes. This message can be passed in either clockwise or counterclockwise

direction.
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3. Second Round of Message Passing

(a) Counterclockwise Message Passing

• Initialize

∆h̃2→3 = −J23J
−1
22 h̃2 (A.31)

• For i = 3, 4, . . . , n− 1,

∆h̃i→i+1 = Kα
i (hi + ∆h̃i−1→i), (A.32)

where Kα
i is the same Kα

i as in the first round of message passing.

(b) Counterclockwise Message Passing

• Initialize

∆h̃n→n−1 = −Jn,n−1J
−1
nn h̃n (A.33)

• For i = n− 1, n− 2, . . . , 3,

∆h̃i→i−1 = Kβ
i (hi + ∆h̃i+1→i), (A.34)

where Kβ
i is the same Kβ

i as in the first round of message passing.

(c) Calculating the exact means and variances of node in T
For i = 2, 3, . . . , n,

µi = P T
ii (∆h̃i−1→i + ∆h̃i+1→i), (A.35)

where ∆h̃1→2, ∆h̃n+1→n are zeros and P T
ii are calculated in Step 1c.

The exact variances can be computed by adding correction terms to P T
ii .

For i = 2, 3, . . . , n,

Pii = P T
ii + P11(g

1
i )

2, (A.36)

where P11 has been passed to every node in the loop and g1
i are computed in Step
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Figure A-3: A graphical model with many loops

1c.

In the whole process of the FMP algorithm, only 8(n − 2) messages are updated and

passed locally, which involve ∆Ji→j, ∆hTi→j, ∆h1
i→j and ∆h̃i→j for neighboring i and j.

Therefore, the inference problem can be solved efficiently for a single loop. Beyond a single

loop, inference on many other graphs with a single feedback node can be solved by the FMP

algorithm in the same way. For example, node 1 in Figure A-3 is connected to all the other

nodes. Any two nodes in the graph can reach each other within two steps. Although there

are many cycles in the graph, exact inference is still efficient since we can choose node 1 as

the feedback node and run the FMP algorithm similarly.
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