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Abstract

In applications of graphical models arising in fields such as com-
puter vision, the hidden variables of interest are most naturally
specified by continuous, non–Gaussian distributions. However, due
to the limitations of existing inference algorithms, it is often neces-
sary to form coarse, discrete approximations to such models. In this
paper, we develop a nonparametric belief propagation (NBP) algo-
rithm, which uses stochastic methods to propagate kernel–based
approximations to the true continuous messages. Each NBP mes-
sage update is based on an efficient sampling procedure which
can accomodate an extremely broad class of potential functions,
allowing easy adaptation to new application areas. We validate
our method using comparisons to continuous BP for Gaussian net-
works, and an application to the stereo vision problem.

1 Introduction

Graphical models provide an efficient, powerful framework for modeling probabilis-
tic relationships. Most existing applications of graphical models employ hidden
variables which take values from a discrete, finite set. In some fields, such as er-
ror correcting codes [1], these discrete models are entirely appropriate. However,
in areas such as computer vision [2–5], they typically arise from quantizations of
continuous variables. Computional costs invariably limit the accuracy of such quan-
tizations, leading to biases and artifacts in the resulting estimates.

The popularity of discrete graphical models can be traced to the existence of effi-
cient algorithms for solving learning and inference problems [6]. For discrete models,
the difficulties associated with inference are purely computational, and involve find-
ing ways to efficiently decompose and/or approximate sums of exponentially many
terms. Although exact inference in general discrete graphs is NP hard [7], approxi-
mate inference algorithms such as loopy belief propagation (BP) [1, 8, 9] have been
shown to produce good results for a wide range of interesting models [2, 5].

For graphical models containing continuous hidden variables, there is an additional
representational challenge. The conditional distributions sought by inference algo-
rithms are not finite vectors but continuous functions. Unfortunately, even if the



potential functions specifying the graphical model have simple parametric forms,
the integral equations used to propagate information across the graph rarely have
tractable analytic solutions [10]. A notable exception occurs when all variables are
jointly Gaussian, so that distributions may be parameterized by their mean and
covariance [9]. However, many real–world phenomena exhibit significant outliers,
bimodalities, and other statistical features which are far from Gaussian.

Since the conditional densities arising in non–Gaussian graphical models lack
tractable parametric forms, it is natural to consider nonparametric approximations.
For temporal inference problems defined on Markov chains, a variety of density rep-
resentations have been explored. Gaussian sum filters [11] use local linearizations
to deterministically propagate Gaussian mixture models. In contrast, particle fil-
ters [12] use Monte Carlo methods to stochastically update a set of weighted point
samples. The stability and robustness of particle filters can often be improved by
regularization methods [12, Chapter 12] in which smoothing kernels [13, 14] explic-
itly represent the uncertainty associated with each point sample.

For more general graphs, the junction tree representation [15] has been used to de-
velop structured approximate inference techniques. A wide variety of algorithms can
be specified by combining an approximate clique variable representation with local
methods for updating these approximations [16, 17]. For example, distributions over
large cliques of discrete variables can be approximated by a set of weighted point
samples, and then related to neighboring nodes using standard message–passing re-
cursions [18, 19]. Koller et al. [17] propose a more sophisticated framework in which
the current clique potential estimate is used to guide message computations, allow-
ing approximations to be gradually refined over successive iterations. However, the
sample algorithm they provide is limited to networks containing mixtures of discrete
and Gaussian variables. In addition, for many graphs (e.g. nearest–neighbor grids)
the size of the junction tree’s largest cliques grows exponentially with problem size,
requiring the estimation of extremely high–dimensional distributions.

The nonparametric belief propagation (NBP) algorithm we develop in this paper ex-
tends this earlier work in two key ways. First, for graphs with cycles we do not form
a junction tree, but instead iterate our local message updates until convergence as
in loopy BP. This has the advantage of greatly reducing the dimensionality of the
spaces over which we must infer distributions. In addition, we provide a message up-
date algorithm specifically adapted to graphs containing continuous, non–Gaussian
potentials. Each message is represented by a kernel–based nonparametric density
estimate, and message products are found by an efficient local Gibbs sampling algo-
rithm. We validate the NBP algorithm on a small Gaussian network, and present
stereo vision results demonstrating its effectiveness.

2 Undirected Graphical Models

An undirected graph G is defined by a set of nodes V, and a corresponding set of
edges E . The neighborhood of a node s ∈ V is defined as Γ(s) � {t|(s, t) ∈ E},
the set of all nodes which are directly connected to s. Graphical models associate
each node s ∈ V with an unobserved, or hidden, random variable xs, as well as a
noisy local observation ys. Let x = {xs}s∈V and y = {ys}s∈V denote the sets of
all hidden and observed variables, respectively. To simplify the presentation, we
consider models with pairwise potential functions, for which p (x, y) factorizes as

p (x, y) =
1
Z

∏
(s,t)∈E

ψs,t (xs, xt)
∏
s∈V

ψs (xs, ys) (1)



However, the nonparametric updates we present may be directly extended to models
with higher–order potential functions.

In this paper, we focus on the calculation of the conditional marginal distributions
p (xs | y) for all nodes s ∈ V. These distributions may be used to calculate the
best estimates of the hidden variables xs relative to a wide range of criteria. For
example, the conditional mean E [xs | y] provides the Bayes’ least squares estimate.
More generally, conditional distributions are useful because they provide informa-
tion about the degree of uncertainty in the estimate of each hidden node.

2.1 Belief Propagation

For graphs which are acyclic or tree–structured, the desired conditional distributions
p (xs | y) can be directly calculated by a local message–passing algorithm known as
belief propagation (BP) [1, 6]. At iteration n of the BP algorithm, each node t ∈ V
calculates a message mn

ts (xs) to be sent to each neighboring node s ∈ Γ(t):

mn
ts (xs) = α

∫
xt

ψs,t (xs, xt)ψt (xt, yt)
∏

u∈Γ(t)\s

mn−1
ut (xt) dxt (2)

Here, α denotes an arbitrary proportionality constant. At any iteration, each node
can produce an approximation p̂n(xs | y) to the marginal distributions p (xs | y) by
combining the incoming messages with the local observation potential:

p̂n(xs | y) = αψs (xs, ys)
∏

t∈Γ(s)

mn
ts (xs) (3)

For tree–structured graphs, the approximate marginals, or beliefs, p̂n(xs | y) will
converge to the true marginals p (xs | y) once the messages from each node have
propagated to every other node in the graph. Conceptually, the steady state BP
message mts (xs) is a sufficient statistic of the observations in the subgraph which
node t separates from node s.

Because each iteration of the BP algorithm involves only local message updates,
it can be applied even to graphs with cycles. For such graphs, the statistical de-
pendencies between BP messages are not properly accounted for, and the sequence
of beliefs p̂n(xs | y) will not converge to the true marginal distributions. In many
applications, however, the resulting loopy BP algorithm exhibits excellent empirical
performance [2, 5]. Recently, several theoretical studies have provided insight into
the approximations made by loopy BP, partially justifying its application to graphs
with cycles [1, 8, 9].

2.2 Nonparametric Representations

Exact evaluation of the BP update equation (2) involves an integration which, as dis-
cussed in the Introduction, is not analytically tractable for most continuous hidden
variables. An interesting alternative is to represent the resulting message mts (xs)
nonparametrically as a kernel–based density estimate [13, 14]. Let N (x;µ,Λ) de-
note the value of a Gaussian density of mean µ and covariance Λ at the point x.
We may then approximate mts (xs) by a mixture of M Gaussian kernels as

mts (xs) =
M∑
i=1

wi
sN

(
xs;xi

s,Λs

)
(4)

where wi
s is the weight associated with the ith kernel mean xi

s, and Λs is a bandwidth
or smoothing parameter. Other choices of kernel functions are possible [14], but in
this paper we restrict our attention to mixtures of diagonal–covariance Gaussians.



In the following section, we describe stochastic methods for determining the kernel
centers xi

s and associated weights wi
s. The resulting nonparametric representations

are only meaningful when the messages mts (xs) are finitely integrable.1 To guaran-
tee this, it is sufficient to assume that all potentials satisfy the following constraints:∫

xs

ψs,t (xs, xt = x̄) dxs <∞
∫

xs

ψs (xs, ys = ȳ) dxs <∞ (5)

Under these assumptions, a simple induction argument will show that all messages
are normalizable. Heuristically, equation (5) requires all potentials to be “informa-
tive,” so that fixing the value of one variable constrains the likely locations of the
other. In most application domains, this can be trivially achieved by assuming that
all hidden variables take values in a large, but bounded, range.

3 Nonparametric Message Updates

Conceptually, the BP update equation (2) naturally decomposes into two stages.
First, the message product ψt (xt, yt)

∏
um

n−1
ut (xt) combines information from

neighboring nodes with the local evidence yt to produce a likelihood function for
xt. Second, this likelihood function is combined with the compatibility potential
ψs,t (xs, xt), and then integrated to produce likelihoods for xs. The nonparametric
belief propagation (NBP) algorithm stochastically approximates these two stages,
producing consistent nonparametric representations of the messages mts (xs). Ap-
proximate marginals p̂(xs | y) may then be determined from these messages by
applying the following section’s stochastic product algorithm to equation (3).

3.1 Message Products

For the moment, assume that the local observation potentials ψt (xt, yt) are rep-
resented by weighted Gaussian mixtures (such potentials arise naturally from
learning–based approaches to model identification [2]). The product of d Gaus-
sian densities is itself Gaussian, with mean and covariance given by

d∏
i=1

N (x;µi,Λi) ∝ N (
x; µ̄, Λ̄

)
Λ̄−1 =

d∑
i=1

Λ−1
i Λ̄−1µ̄ =

d∑
i=1

Λ−1
i µi (6)

Thus, a BP update operation which multiplies d Gaussian mixtures, each containing
M components, will produce another Gaussian mixture with Md components. The
weight w̄ associated with product mixture component N (

x; µ̄, Λ̄
)
is given by

w̄ ∝
∏d

i=1 wiN (x;µi,Λi)
N (

x; µ̄, Λ̄
) (7)

where {wi}d
i=1 are the weights associated with the input Gaussians. Since integra-

tion of Gaussian mixtures is straightforward, in principle the BP message updates
could be performed exactly by repeated use of equations (6,7). In practice, however,
the exponential growth of the number of mixture components forces approximations
to be made. Given d input mixtures of M Gaussian, the NBP algorithm approxi-
mates their Md–component product mixture by drawing M independent samples.

Direct sampling from this product, achieved by explicitly calculating each of the
product component weights (7), would require O(Md) operations. The complexity

1Probabilistically, BP messages are likelihood functions mts (xs) ∝ p (y = ȳ | xs), not
densities, and are not necessarily integrable (e.g., when xs and y are independent).
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Figure 1: Gibbs sampler for a product of 3 Gaussian mixtures, with 3 kernels each. New
indices are sampled according to weights (arrows) determined by the two fixed components
(solid). The final labels identify one of the 33 components of the product density (dashed).

associated with this sampling is combinatorial: each product component is defined
by d labels {li}d

i=1, where li identifies a kernel in the ith input mixture. Although
the joint distribution of the d labels is complex, the conditional distribution of
any individual label lj is simple. In particular, assuming fixed values for {li}i�=j ,
equation (7) can be used to sample from the conditional distribution of lj in O(M)
operations.

Since the mixture label conditional distributions are tractable, we may use a Gibbs
sampler [3] to draw asymptotically unbiased samples from the product distribution.
At each iteration, the labels {li}i�=j for d − 1 of the input mixtures are fixed, and
a new value for the jth label is chosen according to equation (7). At the following
iteration, the newly chosen lj is fixed, and another label is updated (see Figure 1).
Following the final iteration, the mean and covariance of the selected mixture com-
ponent is found using equation (6), and a sample point is drawn.

Assuming the number of iterations for the Gibbs sampler to equilibrate is indepen-
dent of M , we may draw M samples from the product mixture in O(dM2) opera-
tions. Although formal verification of the Gibbs sampler’s convergence is difficult,
in our experiments we have observed good performance using far fewer computa-
tions than required by direct sampling. Note that in the NBP algorithm, the Gibbs
sampler only involves a few hidden variables, in contrast to the very large state
spaces of classic simulated annealing [3].

In some applications, the observation potentials ψt (xt, yt) are most naturally spec-
ified by analytic functions. The previously proposed Gibbs sampler may be eas-
ily adapted to this case using importance sampling [12]. At each iteration, the
weights produced by equation (7) are rescaled by ψt (µ̄, yt), the observation like-
lihood at that kernel’s center. Then, the final sample xi

s is assigned weight
wi

s = ψt

(
xi

s, yt

)
/ψt (µ̄, yt) to account for variations of the analytic potential over

the kernel’s support. This procedure will be most effective when ψt (xt, yt) varies
slowly relative to the typical kernel bandwidth.

3.2 Message Propagation

In the second stage of the NBP algorithm, the information contained in the in-
coming message product is propagated by stochastically approximating the belief
update integral (2). To perform this stochastic integration, the pairwise potential
ψs,t (xs, xt) must be decomposed to separate its marginal influence on xt from the



conditional relationship it defines between xs and xt.

The marginal influence function ζ(xt) is determined by the relative weight assigned
to all xs values for each xt:

ζ(xt) =
∫

xs

ψs,t (xs, xt) dxs (8)

The NBP algorithm accounts for the marginal influence of ψs,t (xs, xt) by incorpo-
rating ζ(xt) into the Gibbs sampler. If ψs,t (xs, xt) is a Gaussian mixture, extraction
of ζ(xt) is trivial. Alternately, if ζ(xt) can be evaluated (or approximated) point-
wise, analytic pairwise potentials may be dealt with using importance sampling. In
the common case where pairwise potentials depend only on the difference between
their arguments (ψs,t (x, x̄) = ψs,t (x − x̄)), ζ(xt) is constant and can be neglected.

To complete the stochastic integration, each particle xj
t produced by the Gibbs sam-

pler is propagated to node s by sampling xj
s ∼ αψs,t(xs, x

j
t ). Note that the assump-

tions of section 2.2 ensure that ψs,t(xs, x
j
t ) is normalizable for any xj

t . The method
by which this sampling step is performed will depend on the specific functional form
of ψs,t (xs, xt), and may involve importance sampling or MCMC techniques.

Having produced a set of independent samples from the desired output message
mts (xs), NBP must choose a kernel bandwidth to complete the nonparametric
density estimate. There are many ways to make this choice; for the results in this
paper, we used leave–one–out likelihood cross–validation [14].

4 Gaussian Graphical Models

Gaussian graphical models provide one of the few continuous distributions for which
the BP algorithm may be implemented exactly [9]. For this reason, Gaussian mod-
els may be used to test the accuracy of the nonparametric approximations made by
NBP. Note that we cannot hope for NBP to outperform algorithms (like Gaussian
BP) designed to take advantage of the linear structure underlying Gaussian prob-
lems. Instead, our goal is to verify NBP’s performance in a situation where exact
comparisons are possible.

We have tested the NBP algorithm on Gaussian models with a range of graphical
structures, including chains, trees, and grids. Similar results were observed in all
cases, so here we only present data for a single typical 5× 5 nearest–neighbor grid,
with randomly selected inhomogeneous potential functions. For each node s ∈ V,
Gaussian BP converges to a steady–state estimate of the marginal mean µs and
variance σ2

s after about 15 iterations. To evaluate NBP, we performed 15 iterations
of the NBP message updates using several different particle set sizes M ∈ [10, 400].
We then found the marginal mean µ̂s and variance σ̂2

s estimates implied by the final
NBP density estimates. For each tested particle set size, the NBP comparison was
repeated 100 times.

Using the data from each NBP trial, we computed the error in the mean and variance
estimates, normalized so each node behaved like a unit–variance Gaussian:

µ̃s =
µ̂s − µs

σs
σ̃2

s =
σ̂2

s − σ2
s√

2σ2
s

(9)

Figure 2 shows the mean and variance of these error statistics, across all nodes and
trials, for different particle set sizes M . The NBP algorithm always provides unbi-
ased estimates of the conditional mean, but overly large variance estimates. This
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Figure 2: NBP performance for a 5 × 5 grid with Gaussian potentials and observations.
Plots show the mean (solid line) and standard deviation (dashed line) of the normalized
error measures of equation (9), as a function of particle set size M .

bias, which decreases as more particles are used, is due to the smoothing inherent
in kernel–based density estimates. As expected for samples drawn from Gaussian
distributions, the standard deviation of both error measures falls as M−1/2.

5 Stereo Vision

Stereo vision algorithms infer point correspondences between horizontally aligned
image pairs of the same three–dimensional scene [4, 20]. The distance, or disparity,
between matching pixels is inversely proportional to the corresponding object’s dis-
tance from the camera. Estimation of accurate, dense disparity maps is complicated
by textureless regions, pixelization effects, and occlusions. For these reasons, prior
knowledge about disparity variations plays a critical role in stereo computation.

The prior assumptions underlying stereo vision algorithms are often represented by
grid–structured graphical models in which pairwise potentials correlate neighboring
disparity values, while observation potentials measure similarities between local
image features [5, 20]. In [4], three types of potential functions are suggested, each
encoding different assumptions about the underlying disparity “worlds”:

World I Pairwise potentials assume disparity differences are Gaussian. Similarly,
observation potentials assign Gaussian distributions to image feature differences.
Note that the resulting disparity likelihoods are not Gaussian.
World II The Gaussian potentials of World I are augmented by binary outlier
processes to model occlusions and depth discontinuities. We instead use Gaussians
contaminated by uniform noise, as suggested by [21]. A similar model has been
used with the discrete BP algorithm [5].
World III Observation potentials are as in World II, but the hidden variable
at each node is augmented to model horizontal and vertical disparity gradients.
Uniform–contaminated Gaussian potentials model differences in adjacent gradients.

Our goal is not to present state–of–the–art stereo results, but to explore the char-
acteristics of the NBP algorithm using the unique features of each world.

5.1 Worlds I & II

Figure 3 compares the NBP algorithm’s performance to discretized BP on two
50×50 patches containing interesting disparity features. The patches were extracted
from the standard “Venus” and “Sawtooth” stereo test images [20]. Discrete BP
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Figure 3: NBP and discrete BP stereo results for the “Venus” and “Sawtooth” patches.
Top row: reference image and true disparities. Second row: World I. Third row: World II.

quantized the one–dimensional disparity space to 100 levels, while NBP used 100
particles sampled with 100 MCMC iterations. Because of the limited range of pos-
sible disparities, discrete BP’s results approximate the true continuous BP results
extremely accurately. We see that NBP accurately captures the qualitative features
of both worlds, matching the discrete BP results extremely well.

5.2 World III

All of the objects in the Venus and Sawtooth images have slopes which are nearly
parallel to the image plane. For this reason, the gradient information used in World
III’s sophisticated prior does not significantly modify the World II results. We have
constructed a synthetic stereo problem, shown in Figure 4, consisting of a single
constant slope scan line. Both ends of the scan line contain good observations,
but the central section contains no disparity information, as would be caused by a
textureless image region. Figures 4(b,c) show that World II’s bias towards horizontal
surfaces is inappropriate for this data set. Figure 4(d) shows performance attained
by discrete BP with slopes chosen to exactly match the true surface. However, in
practical situations it is not possible to discretize the three–dimensional World III
state space finely enough to achieve this. Figure 4(e) shows the heavy quantization
artifacts produced by discrete BP using 1000 (40× 5× 5) points. In contrast, using
only 100 points, NBP produces the high–resolution density estimates of Figure 4(f).

6 Discussion

We have developed a nonparametric sampling–based variant of the belief propaga-
tion algorithm for graphical models with continuous, non–Gaussian random vari-
ables. Our stereo vision results suggest that NBP achieves performance comparable
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Figure 4: Stereo results for a synthetic scan line. Each plot is a columnwise representation
of the nodes’ marginal distributions. (a) Observation likelihoods. (b) World II discrete
BP. (c) World II NBP. (d) World III ideal. (e) World III discrete BP. (f) World III NBP.

to discretization for low–dimensional hidden variables, and may offer significant
advantages in higher dimensional spaces. In the future, the application of more
sophisticated Monte Carlo and density estimation techniques could improve the
statistical accuracy and computational efficiency of the message updates. We hope
that the nonparametric approach will allow richer, more realistic models to be de-
signed and used in applications in which continuous variables naturally arise.
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