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Abstract

Institutional fund managers generally rebalance usingad hoc methods such as calendar basis or

tolerance band triggers. We propose a different framework that quantifies the cost of a rebalancing
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show the robustness of our method to model error by performing sensitivity analyses.
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I. I NTRODUCTION

Institutional money managers develop risk models and optimal portfolios to match a desired risk/reward

profile. Utility functions provide one method for modeling these risk preferences. Implicitly determined by

the views of trustees or directors, utility functions yielda target portfolio which is a set of optimal weights

for different asset classes. Given the fact that different asset classes can exhibit different rates of return,

a manager cannot maintain this target of weights over time without active rebalancing. Furthermore,

managers also must rebalance if the weights in the target portfolio are altered. This occurs when the

model for expected returns of asset classes change or the risk profile is altered (as indicated by a change

in the utility function).

Most academic theory ignores frictional costs and assumes that a portfolio manager can simply readjust

their holdings dynamically without any problems. In practice, trading costs are non-zero and affect the

decision to rebalance. The transactions costs involve the actual cost paid for the trades as well as the

cost of manpower and technological resources. If the transactions costs exceed the expected benefit from

rebalancing, then no adjustment should be made. However, without any quantitative measure for this

benefit, we cannot accurately determine whether or not to trade.

Conventional approaches to portfolio rebalancing includeperiodic and tolerance band rebalancing [1],

[2]. With periodic rebalancing, the portfolio manager adjusts the current weights back to the target weights

at a consistent time interval (e.g., monthly or quarterly). The drawback with this method is thattrading

decisions are independent of market behavior. So rebalancing may occur even if the portfolio is nearly

optimal. Tolerance band rebalancing requires managers to rebalance whenever any asset class deviates

beyond some pre-determined tolerance band (e.g., ±5%). When this occurs, the manager fully rebalances

to the target portfolio. While this method reacts to market movements, the threshold for rebalancing is

fixed, and the process of rebalancing involves trading all theway back to the optimal portfolio.

Previous research on dynamic strategies for asset allocation [3] has established the existence of a no-

trade region around the optimal target portfolio weights [4]. If the proportions allocated to each asset at

any given time lie within this region, trading is not necessary. However, if current asset ratios lie outside

the no-trade region, Leland has shown that it is optimal to trade but only to bring the weights back to the

nearest edge of the no-trade region and not all the way to the target ratios. The optimal strategy has been

shown to reduce transaction costs by approximately 50%. However, the full analytical solution involves

a complicated system of partial differential equations in multiple dimensions.

Mulvey and Simsek [5] have modeled the problem of rebalancingin the face of transaction costs as a
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generalized network with side conditions and developed an algorithm for solving the resulting problem.

Meanwhile, Mitchell and Braun [6] have described a method for finding an optimal portfolio when

proportional transactions costs have to be paid. More recently, Donohue and Yip [1] have confirmed the

results of Leland [4] and have characterized the shape and size of the no-trade region and compared the

performance of different rebalancing strategies.

In this paper, we present an approach that explicitly weighstransaction costs and tracking error

costs. We define a cost for a suboptimal portfolio using certainty equivalents [7], and we use dynamic

programming to develop a policy that trades only when the cost of trading is less than the cost of doing

nothing. In addition, given a decision to rebalance, we do not enforce a constraint of rebalancing to the

optimal portfolio. The importance of relaxing this constraint is that in many situations, the cost of fully

rebalancing is more than the benefit obtained. We show that ourmethod performs better than traditional

methods of rebalancing and is robust to model error. Note that we assume that the portfolios are either

tax-free or tax-deferred, which is the case for endowments,charities, pension funds, and most individual

retirement funds.

In Section II, we discuss utility functions and the method of dynamic programming. We introduce

certainty equivalents and discuss how we use them to track costs and determine our optimal rebalancing

strategy in Section III. We then demonstrate the rebalancingproblem on a simple two-asset example in

Section IV to illustrate our algorithm and provide some simple sensitivity analyses. Section V examines

the more general case of mean-variance optimization on multiple assets over long periods of time. We

conclude the paper in Section VI.

II. BACKGROUND

A. Utility Functions

Evaluating individual preferences to risk and return and making corresponding portfolio allocation

decisions is a difficult task. Investment professionals needto analyze various factors to develop portfolios

that allow clients to reach their investment goals while taking into account risks associated with bear

markets and singular events such as crashes.

No single portfolio can meet the needs of every investor. As mentioned in the introduction, one way to

specify an investor’s risk preference is through the use of utility functions [8]. A utility function indicates

how much satisfaction (utils) we get for a given level of return x. Clearly, most people prefer higher

levels of return to lower levels of return, so generally utility functions monotonically increase withx. If

the marginal utility decreases withx (i.e., utility grows sublinearly), then an individual is said to be risk
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Utility Function Expected Utility

Quadratic fq(x) = x −

α

2
(x − x0)

2 Uq(µ, σ) = µ −

α

2
σ2

Log wealth fl(x) = log(1 + x) Ul(µ, σ) = log(1 + µ) − σ2

2(1+µ)2

Power fp(x) = 1 − 1/(1 + x) Up(µ, σ) = 1 −

1
(1+µ)

−

σ2

(1+µ)3

TABLE I

UTILITY FUNCTIONS AND THEIR CORRESPONDING APPROXIMATE EXPECTED UTILITIES USED. THE UTILITY FUNCTIONS fi

ARE EXPRESSED IN TERMS OF THE RETURNx. THE EXPECTED UTILITY FUNCTIONSUi ARE SPECIFIED IN TERMS OF THE

MEAN RETURN µ AND THE STANDARD DEVIATION σ. FOR QUADRATIC UTILITY, α IS THE RISK AVERSION PARAMETER.

averse. Numerous other risk characteristics can be imparted through the shape of the utility function. A

manager then chooses portfolio weightsw so that expected utility is maximized.

Because future returns are unknown, we need to use expected utility to create an optimal portfolio or

to decide on a rebalancing policy. It has been shown by Levy andMarkowitz [9] that for most relevant

utility functions, this expected utilityU can be approximated using truncated Taylor series expansions to

be a function of mean and standard deviation,U(µ, σ).

In Table I, we list three utility functions and the corresponding expected utilities that we use [10]. For

each utility,fi(x) for i = {q, l, p} (whereq indicates quadratic,l indicates logarithmic, andp indicates

power) represents the utility in utils given a returnx, which we also refer to as the empirical utility.

Ui(µ, σ) for i = {q, l, p} is the expected utility. Figure 1 plots the three empirical utility functions as

a function of return. The relative difference, not the absolute value, in utility for differentx is what is

important (we could scale the utility functions without affecting the corresponding optimal portfolio).

Quadratic utility is a commonly used function, and using it in portfolio construction is akin to doing

standard mean-variance optimization. Regardless of whether or not the assets are Gaussian-distributed,

the expected utility only involves the first two moments, so any higher order moments are ignored. The

α parameter can be adjusted to indicate risk tolerance. A larger number indicates that an investor is

more risk averse. One main difficulty with quadratic utility is that it has the odd behavior that for a

large enough return, it istoo risk averse and the utility function actually prefers a smaller return because

lim
x→∞

fq(x) = −∞. This behavior begins atx = x0 + 1
α

, the maximum of the quadratic function. The log

wealth and power utility functions do not exhibit this behavior.

Even though it is true that the expected utility can be writtenjust in terms of the mean and variance,
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Fig. 1. Plots of the quadratic utility (for two differentα’s), log wealth utility, and power utility as a function of returns.

the expression shown forUq(µ, σ) is only an approximation. The true expression is:

Uq(µ, σ) = µ −
α

2
(σ2 + (µ − x0)

2). (1)

Note that if we hada priori knowledge of the portfolio returnµ, we would just choosex0 = µ.

Unfortunately,µ is a function of the portfolio weightsw, so we cannot fix it ahead of time. In the typical

operating regime,µ(w) ≈ µ(w∗) because we would typically rebalance before the portfoliosbecome too

unbalanced. So if we choosex0 = µ(w∗), then the(µ−x0)
2 term in (1) is small, andUq as a reasonable

approximation to the true expected utility. This leaves a much simpler expected utility function (especially

in terms ofµ).

The derivation of the expected utility functions for log wealth and power is non-obvious. Let’s examine

log wealth utility. We can expand the utility function around the pointx = µ using a Taylor series:

fl(x) = log(1 + x) = log(1 + µ) +
1

1!
f ′

l (1 + µ)(x − µ) +
1

2!
f ′′

l (1 + µ)(x − µ)2 + · · ·

≈ log(1 + µ) +
x − µ

1 + µ
−

(x − µ)2

2(1 + µ)2
. (2)
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Thus we see that

Ul(µ, σ) = E[log(1 + x)]

≈ E

[

log(1 + µ) +
x − µ

1 + µ
−

(x − µ)2

2(1 + µ)2

]

= log(1 + µ) −
σ2

2(1 + µ)2
.

Additional terms of the Taylor expansion may be used to improve the approximation. These will then

involve the skewness and the kurtosis and other higher-order moments. A similar method is applied to

derive the approximation for power utility.

B. Dynamic Programming

Dynamic programming [11], [12], [13] is an optimization technique that finds the policy that minimizes

expected cost given a cost functional and a dynamic model of state behavior. At timet, wt is our state,

ut is our policy, andnt is the state uncertainty. The state transition is defined by an arbitrary functionh:

wt+1 = h(wt, ut, nt), (3)

wherewt+1 represents the new state which is influenced by the prior statewt, the action takenut, and

the uncertainty in the system dynamicsnt. We write the cost functional recursively as:

Jt(wt) = E [G(wt, ut, nt) + Jt+1(wt+1)] , (4)

whereG is the cost for the current period andJt is the so-calledcost-to-go function.Jt is the expected

future cost fromt onwards given all future decisions. So, the cost at any given period is the expected

cost fromt to t+1 along with the expected cost fromt+1 onwards. At each timet, the optimal strategy

is to chooseut such that the cost is minimized:

J∗t (wt) = min
ut

E [G(wt, ut, nt) + Jt+1(wt+1)] . (5)

Equation (5) is the discrete-time Bellman Equation. Assumingconvergence, this recursion approaches a

fixed point such thatJ∗t (w) = J∗t+1(w) = J∗(w). The challenge is therefore to determine the cost-to-go

valuesJ∗(w). Once these values are known, the optimal rebalancing decision is to choose the policyu∗
t

that minimizes (5).

We can determine the cost-to-go values using a technique called value iteration. The idea behind value

iteration is to choose an arbitrary set of cost-to-go valuesJt(w) for some timet that we imagine to be

very far in the future. We then repeatedly apply (5) to obtaincost-to-go values successively closer to
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the present. After a sufficient number of iterations, we will approach a steady-state, and the cost-to-go

values should converge to the optimal valuesJ∗(w).

III. O PTIMAL REBALANCING USING DYNAMIC PROGRAMMING

In this section, we investigate optimal rebalancing strategies for portfolios with transaction costs. In

general, we consider a multi-asset problem where we are given an optimal portfolio consisting of a set

of target portfolio weightsw∗ = {w∗
1, . . . , w

∗
N}, whereN is the total number of assets. The optimal

strategy should be to maintain a portfolio that tracks the optimal portfolio as closely as possible while

minimizing the transaction costs.

We consider a model where we observe the contents of the portfolio wt at the end of each month. At

that point, we have the option of rebalancing the portfolio (i.e. apply our policy, or control,ut). Thus, the

portfolio at the beginning of the next month iswt + ut. Then we assume normal returns in the process

noisent. We use a simple multiplicative dynamic model so thatwt+1 = (1 + nt)(wt + ut), although in

general,wt+1 can be an arbitrary function ofwt, ut, andnt.

In general, the decision to rebalance should be based on a consideration of three costs: the tracking error

associated with any deviation in our portfolio from the optimal portfolio, the trading costs associated with

buying or selling any assets during rebalancing, and the expected future cost from next month onwards

given our actions in the current month. The optimal strategy dynamically minimizes the total cost, which

is the sum of these three costs.

To apply dynamic programming, we must specify the cost function in the Bellman Equation. In our

case, we write:

E [G(wt, ut, nt)] = τ(ut) + ε(wt + ut), (6)

whereτ(ut) is the trading cost associated with applying our rebalancing decisionut. This can include

tangible costs such as commissions and market impact, but can also model indirect costs such as employee

labor. ε(·) represents the suboptimality cost, the cost of not having anoptimal portfolio.ε(wt + ut) = 0

wheneverwt + ut = w∗ (i.e. chooseut so that we rebalance to the target portfolio); otherwise,ε(·) > 0.

A. Modeling Tracking Error using Certainty Equivalents

Note that the cost-to-go values, and hence the optimal strategy, will depend on the cost functionsτ(·)

and ε(·) chosen. In this section, we discuss strategies for modelingtracking error.

In the certainty equivalence approach, we model the investor’s preferences using a utility function (see

Section II-A). For any portfolio weightsw, we can express the expected utility asU(µT w, wT Λw). We
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observe that there exists a risk free rate (which we will denote asrCE(w)) that produces an identical

expected utility. We therefore callrCE(w) thecertainty equivalent return for the weightsw. The condition

for this isU(rCE , 0) = U(µT w, wT Λw). The certainty equivalents for the three expected utility functions

that we are using are:

1) Quadratic:rCE(w) = Uq(µ
T w, wT Λw)

2) Log wealth:rCE(w) = exp(Ul(µ
T w, wT Λw)) − 1

3) Power:rCE(w) = 1/(1 − Up(µ
T w, wT Λw)) − 1.

One interpretation of the certainty equivalent then is as a risk-adjusted rate of return given the risk

preferences embedded in the utility function.

If we hold a suboptimal portfoliow, the utility of that portfolioU(w) will be lower thanU(w∗), with a

correspondingly lower certainty equivalent return. We caninterpret this as losing a riskless return (equal

to the difference between the two certainty equivalents) over one period, corresponding to the penalty

paid for tracking error. Therefore, under the certainty equivalence approach, the tracking error has the

cost function

ε(w) = rCE(w∗) − rCE(w). (7)

The reason why we use a certainty equivalent is because in our cost function,τ(·) and ε(·) must

have commensurate values. We know that the cost will be in terms of dollars or basis points or some

other absolute measure. It is more straightforward to then convert portfolio tracking error into a similar

absolute measure using certainty equivalents rather than trying to express the trading costs in terms of

diminished expected utility.

B. Modeling Transaction Costs

Assume that we have a portfoliow and we want to go to another portfoliow′. The simplest model

for transaction costs is simply to assume a linear cost. Under this model, we assume that for asseti we

pay a transaction cost ofci per dollar to buy or sell the asset. Under this model,

τ(w′, w) = cT |w′ − w|, (8)

wherecT = [c1, . . . , cN ] is the vector of transaction cost coefficients. A variant of the linear cost model,

C(w′, w) = cT
+ max{w′ − w, 0} + cT

− max{w − w′, 0}, (9)

allows for different costs to buy (c+) and sell (c−) assets.
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Building on the linear cost model, we can also allow for fixed costs in rebalancing as well. This model

discourages frequent rebalancing and can be used to model the significant dislocation costs associated

with transferring assets from one manager to another. This model can be written as

C(w′, w) = cT
+ max{w′ − w, 0} + cT

− max{w − w′, 0} + cT
f I(w − w′), (10)

wherecf is the vector of fixed costs associated with trading each asset, and the indicator functionI(x)

is 1 if x > 0 and 0 otherwise.

IV. T WO-ASSETMODEL

To introduce the problem of portfolio rebalancing, we first consider an example involving two risky

asset classes. The benefits of the two risky asset model are thatthe optimal portfolio can be computed in

closed form (see [14] for a derivation), we can visually examine the changes in portfolio weights (since a

single asset’s weight represents the full description of our portfolio), and the parameters are few enough

that we can easily perform sensitivity analyses. We follow this example with extension simulations of a

multi-asset model.

We assume that we can invest in (1) US Equity or (2) Private Equity. We assume that returns are

normal1, so the mean and covariance statistics sufficiently characterize the assets. We obtain6.84%

and12.76% expected annual returns for US Equity and Private Equity, respectively, based on historical

observations, and acquire the covariances from Terhaaret al. [16]. Specifically, they cite that US Equity

has standard deviation of 12.80% annually, while Private Equity has standard deviation of 21.00%. The

correlation coefficient between the two assets is -0.46. Given this information, we create the efficient

frontier (Figure 2).

A. Simulation

For brevity, we only consider quadratic utility in this section. Suppose the risk aversion parameterα

is 0.33. Using this assumption, the optimal portfolio balance is41.00% in US Equities and59.00% in

Private Equity. To provide an example of our rebalancing method, we simulate the returns of the two

equities over a ten year period, assuming normal distribution of returns with means and covariance as

described earlier. Computationally, we obtain a random sample from the normal distribution for each

month of our simulation.

1Because we consider monthly data, a normal assumption is reasonable.For longer time periods, lognormality would be a

better assumption.
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Fig. 2. Efficient frontier of two risky asset case with the optimal portfolio for quadratic utility (α = .33) labeled.

Figure 3 shows how the portfolio weight of US Equities moves over one 120 month sample path. With

no rebalancing (Figure 3(a)), the weight drifts from the optimal amount of41.00% down to under20%,

resulting in large suboptimality costs (the exact costs aredescribed below). Our optimal rebalancing

strategy (Figure 3(b)) rebalances only when necessary. During months40 to 45 and 90 to 110, the

portfolio rebalances nearly every month to handle sharp changes in the portfolio, while for months45

to 80, the lack of strong market movements in either direction allow us to avoid any transaction costs.

The market movement during the times cited can be seen by examining the change in portfolio weights

in Figure 3(a) where there is no rebalancing.

Table II shows the costs of trading using different strategies. Trading costs are assumed to be 20 bps

for buying or selling public equity, and 40 bps for buying or selling private equity. The suboptimality

cost was determined using the idea of certainty equivalents. For each portfolio, a certainty equivalent

can be computed (in terms of monthly returns). The differencebetween the certainty equivalent of a

non-optimal portfolio and that of the optimal portfolio is defined as the cost of not being optimal.

From the table, we observe that the aggregate monthly cost is minimized by our method. Over a

ten year period, the cost of our algorithm, assuming $100 million invested, is $281,300. The next best

method for this example, that of yearly rebalancing, costs $337,100. The results for each rebalancing

method make intuitive sense. Monthly rebalancing leads to no deviation from optimality, but at the cost
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Fig. 3. Plots of US Equities weighting in the two asset example using differentrebalancing models. The vertical lines indicate

months where rebalancing was done (for monthly rebalancing, this is omitted since trading occurs in every month).

Trading Suboptimality Aggregate

Cost (bps) Utility Cost (bps) Cost (bps)

Optimal DP 18.14 9.99 28.13

No Trading 0.00 1509.74 1509.74

5% Tolerance 17.59 16.83 34.43

Monthly 62.61 0.00 62.61

Quarterly 37.78 1.74 39.52

Annual 20.29 13.42 33.71

TABLE II

TRADING COST, SUBOPTIMALITY COST, AND AGGREGATE COST USING SIX DIFFERENT REBALANCING STRATEGIES ON TWO

RISKY ASSETS OVER A TEN YEAR PERIOD.
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Fig. 4. Sensitivity analysis on mean, standard deviation, and correlation for two asset example. The vertical line indicates the

rate used by the rebalancing strategies. (a) Sensitivity to mean rate for USEquity. (b) Sensitivity to mean rate for Private Equity.

(c) Sensitivity to variance for US Equity. (d) Sensitivity to variance for Private Equity. (e) Sensitivity to correlation between US

and Private Equity.

of high trading fees. Infrequent trading yields smaller trading costs, but higher non-optimality certainty

equivalent costs. Our method of rebalancing whenever the cost of non-optimality exceeds the trading

costs allows us to adequately trade-off the cost of non-optimality with that of trading.

B. Sensitivity Analysis

So far, we have assumed that the model for each asset is accurate. In practice, this is usually not the

case – mean and variance of the returns of each asset as well asthe correlation between assets must

be estimated (e.g. using historical observations), and there is usually some error associated with each

estimate. Errors in the parameter estimate will cause inaccuracies in the cost-to-go values obtained from

the dynamic program, leading to suboptimal rebalancing. Inthis section, we investigate the impact of

errors in each of these parameters on the rebalancing strategy.

We investigate a total of three parameters – mean, variance,and correlation. In each simulation, two

parameters are held constant while the third is allowed to vary around the estimated value. The costs-to-

go are used to calculate the estimated values. We characterize the performance of the strategy when the
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estimated parameters differ from the actual parameters. For calendar and tolerance band strategies, we

assume that they would also rebalance to an optimal portfolio calculated from the estimated parameters.

We expect the performance of all strategies to degrade when the parameter estimate is inaccurate.

However, the main issue is whether some strategies are relatively more robust to inaccuracies than others.

We expect our approach to be most sensitive to model error because the model parameters are used to

both generate the target portfolio and the rebalancing strategy. The other methods only rely on the model

for the target portfolio.

First, we assume that the variance and correlation are correctly estimated and investigate estimation

errors in the mean. For each point, 100 sequences of ten year monthly returns were generated, and

the performance of the dynamic rebalancing strategy was averaged over each sequence. The dynamic

rebalancing strategy was reasonably insensitive to errorsin estimating the mean: from Figure 4(a) and (b),

we can observe that the DP approach outperforms all other strategies over a range of several percentage

points of inaccuracies in the estimation. We can conclude that as long as the mean can be accurately

estimated to within a few percentage points, the dynamic programming-based approach is still the best

choice. From Figure 4(c) and (d), we see that the dynamic programming approach again outperforms the

other approaches even if there are large errors in estimating the standard deviation – it remained the best

performer even given inaccuracies in the standard deviation of several percentage points per year. Finally,

in Figure 4(e), we observe that the dynamic programming approach is insensitive to errors in estimation

of the correlations between assets – the approach outperforms all others in a wide range of correlations.

This suggests that correlations do not need to be accurately estimated for the purposes of the DP.

V. M ULTI -ASSETMODEL

Now that we have described and analyzed the simple two-assetmodel, we proceed to examine the

general case of N risky assets. Unlike the two-asset scenario, the optimal portfolio cannot be computed

in closed-form for anyN > 2. In this section, we consider the case of five risky assets andassert that

another choice ofN > 2 would proceed similarly with the main difference being computation time.

For our analysis, we concentrate on generating optimal portfolios with five asset classes: US Equity,

Developed Market Equity, Emerging Market Equity, Private Equity, and Hedge Funds. In Table III,

we show the mean and standard deviation of each asset class along with higher order statistics such

as skewness and kurtosis for historical monthly returns from January 1990 to March 2004. Normally

distributed data have zero skewness and a kurtosis of 3. Mostof the assets exhibit approximately normal

returns with the exception of Hedge Funds, which has high kurtosis indicating a heavy-tailed distribution.
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Index as Proxy Mean Std. Skewness Kurtosis

(Source) Return (%) Dev. (%) (normal = 0) (normal = 3)

US Equity Russell 3000 (Datastream) 6.84 14.99 -0.57 3.67

Developed Mkt Equity MSCI EAFE+Canada (Datastream) 6.65 16.76 -0.20 3.27

Emerging Mkt Equity MSCI EM (Datastream) 7.88 23.30 -0.73 4.71

Private Equity Wilshire LBO (Bloomberg) 12.76 44.39 -0.40 3.82

Hedge Funds HFR Mkt Neutral (Bloomberg) 5.28 10.16 -0.83 7.04

TABLE III

ANNUAL MEAN RETURNS, ANNUAL STANDARD DEVIATIONS , SKEWNESS, AND KURTOSIS FOR THE ASSET CLASSES.

US Developed Emerging Private Hedge

Equity Markets Markets Equity Fund

US Equity 1.00 0.46 0.45 0.64 0.29

Developed Markets 0.46 1.00 0.42 0.38 0.09

Emerging Markets 0.45 0.42 1.00 0.40 0.21

Private Equity 0.64 0.38 0.40 1.00 0.36

Hedge Fund 0.29 0.09 0.21 0.36 1.00

TABLE IV

CORRELATION COEFFICIENT MATRIX.

The correlation matrix used is shown in Table IV. Of the different assets, Private Equity provides the

most expected return, but has the greatest amount of risk. Onthe other extreme, Hedge Funds have both

the least expected return and the least amount of variability. The mean returns were provided by State

Street Associates and the variances and correlations were computed empirically from data acquired from

Datastream and Bloomberg.

It is known [10] that standard mean-variance portfolio optimization produces optimal portfolios only if

returns are normally distributed or if quadratic utility isassumed. Otherwise, full-scale optimization must

be performed to compute optimal portfolios when using more advanced utility functions such as log wealth

or power utility. However, recent work by Cremerset al. [17] indicates that except when returns are highly

non-normal, it is sufficient to perform mean-variance optimization on a Markowitz-style approximate

expected utility function (see Section II-A) in terms of justthe mean and standard deviation. They show
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Fig. 5. Efficient frontier and optimal portfolios for the different utility functions discussed. (o) indicates the optimal portfolio

for power utility. (+) indicates that for quadratic utility withα = 1.5. (*) indicates the optimal portfolio for log wealth utility.

that the performance of the resulting portfolios and the performance of those generated from full-scale

optimization do not differ significantly. When performing this approximate mean-variance optimization,

the optimal portfolio lies on the efficient frontier2 [15]. Therefore, to construct optimal portfolios for

different utility functions, we first compute the efficient frontier by solving a quadratic programming

problem and then search over those portfolios to find the one with the highest expected utility.

Figure 5 displays the efficient frontier for the five asset classes when short sales are not allowed.

Searching over this frontier for each of the utility functions results in the optimal portfolios as indicated

in the figure with the weights shown in Table V. These weights arethe optimal weights we use throughout

our analysis.

A. Results

Table VI show the results of our dynamic programming algorithm and some existing rebalancing

methods on Monte Carlo simulations. We generated 10,000 sample paths, each for ten years of monthly

2Risk-averse expected utility functions are monotonically increasing in termsof return and monotonically decreasing in terms

of risk. Hence if a portfolio is not on the efficient frontier, there exists a portfolio with equivalent return and less risk or more

return and the same risk. Therefore this portfolio cannot be optimal.
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Quadratic (α=1.5) Logarithmic Power

US Equity 0.194 0.160 0.210

Developed Market Equity 0.222 0.240 0.213

Emerging Market Equity 0.185 0.275 0.143

Private Equity 0.156 0.292 0.093

Hedge Funds 0.243 0.033 0.341

TABLE V

OPTIMAL PORTFOLIO WEIGHTS FOR DIFFERENT UTILITY FUNCTIONSU(µ, σ).

return data. Each month is sampled independently from the others, so we do not model effects such

as trends, momentum, or mean reversion. For each sample path, we simulate the various rebalancing

methods by generating a return value for each month that is net of transaction costs.

We measure performance as a shortfall relative to an idealized rebalancing strategy which rebalances

to the optimal portfolio every month for free. All real worldstrategies will suffer shortfalls due to trading

cost, suboptimal portfolios, or both. We measure this shortfall using the actual trading cost that we incur

(column (a)) and the decrease in certainty equivalent from the optimal portfolio (column (b)). These

combine to give the aggregate shortfall in column (c).

Note that this aggregate shortfall is exactly what our dynamic programming algorithm is trying to

minimize. All of the real-world algorithms are really trying (implicitly or explicitly) to minimize this

aggregate cost by trying to balance trading cost and suboptimality cost. At one extreme is monthly

rebalancing which has zero suboptimality cost but requiresa lot of trading to implement. At the other

extreme is no rebalancing which does not cost anything in trading cost to implement, but a severe penalty

is paid in terms of risk adjusted return. All of the other methods fall somewhere in between.

The aggregate cost is perhaps a bit unsatisfying as a metric because the risk-adjusted return component

is based onexpected month-to-month returns (certainty equivalents) rather than theactual returns observed

in the Monte Carlo simulation. Another approach to evaluatethe results is to then use the actual sample

returns. We can use the sample returns to compute the empirical utility at each time period (using the

empirical utility functions in Table I), and then take the sample average of this to obtain an average utility

shortfall (column (d)). Of course, since the data are ergodic3, we expect the sample average shortfall and

3Ergodicity certainly holds in our Monte Carlo simulations because we sample independently.
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(a) (b) (c) (d) (e) (f)

Trading Suboptimality Aggregate Utility Net Standard

Cost Cost Cost Shortfall Returns Deviation

(bps) (bps) (bps) (utils x 104) (%) (%)

Quadratic Ideal 0.00 0.00 0.00 0.00 7.45 14.84

α = 1.5 Optimal DP 4.04 1.72 5.75 5.55 7.40 14.86

No Trading 0.00 71.72 71.72 71.36 6.77 14.96

5% Tolerance 7.39 0.70 8.09 8.03 7.37 14.83

Monthly 23.66 0.00 23.66 23.72 7.22 14.84

Quarterly 13.68 0.28 13.96 14.28 7.32 14.85

Annual 6.84 1.55 8.39 8.24 7.40 14.94

Power Ideal 0.00 0.00 0.00 0.00 6.89 12.38

Optimal DP 3.47 1.21 4.67 4.43 6.87 12.48

No Trading 0.00 81.70 81.70 82.31 6.77 14.95

5% Tolerance 5.30 0.83 6.13 5.75 6.83 12.36

Monthly 20.05 0.00 20.05 19.96 6.69 12.38

Quarterly 11.59 0.18 11.78 11.90 6.77 12.39

Annual 5.82 1.02 6.84 6.64 6.84 12.46

Log Wealth Ideal 0.00 0.00 0.00 0.00 8.65 20.57

Optimal DP 4.87 2.26 7.13 7.09 8.57 20.49

No Trading 0.00 91.51 91.51 87.82 6.77 14.98

5% Tolerance 11.99 0.44 12.43 12.74 8.53 20.60

Monthly 28.14 0.00 28.14 28.18 8.37 20.58

Quarterly 16.25 0.40 16.65 17.13 8.49 20.59

Annual 8.06 2.17 10.22 10.18 8.57 20.67

TABLE VI

QUADRATIC (α = 1.5), POWER, AND LOG WEALTH UTILITY : ANNUALIZED TRADING COST, NON-OPTIMAL UTILITY COST,

AND AGGREGATE COST USING SIX DIFFERENT TRADING STRATEGIES ON FIVE RISKY ASSETS SIMULATED OVER A TEN YEAR

PERIOD10,000TIMES. THE UNITS ON UTILS MULTIPLIED BY 104 (IN COLUMN (D)) ARE SIMILAR TO BASIS POINTS IN

COLUMNS (A)-(C). THIS IS OBVIOUS FOR THE QUADRATIC CASE WHERE THE CERTAINTY EQUIVALENT IS EQUAL TO THE

UTILITY . FOR THE OTHER TWO CASES, TAKING A LINEAR APPROXIMATION AROUND x = 0 SHOWS THAT THE UTILITIES

ARE PROPORTIONAL TOx. SO, UTILS TIMES 104 PROVIDES A REASONABLE APPROXIMATION TO BASIS POINTS.
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the expected shortfall to produce similar results.

In columns (e) and (f) we list the sample means and standard deviations of the strategies. These are

primarily illustrative to show the tradeoffs that different rebalancing strategies make. Most of the strategies

fare a bit worse than the idealized rebalancing strategy on both net returns and risk.

When comparing the results from the different utility functions, recall that each utility function has a

different risk level which in turn induces a different optimal portfolio. This is why the net returns and

standard deviations (columns (e) and (f)) can vary so much from utility function to utility function.

B. Quadratic Utility

For the quadratic utility case shown in Table VI, we see that our optimal DP method performs 29%

better in terms of expected cost and 31% better in terms of average utility over the next-best method,

5% tolerance bands. If we examine the costs, we see, as expected, that monthly trading incurs no

suboptimality at the expense of high trading costs. The otherextreme of no trading incurs an extremely

large suboptimality cost because over a ten year period, assets can become quite unbalanced if unadjusted.

It also should be noted that our method can be thought of as a dynamic tolerance band approach. Thus,

since the 5% tolerance method is a subset of our algorithm, itcan never do better.

C. Power Utility

For power utility, the results are shown in Table VI. As with quadratic utility, our expected loss is

24% less than the runner-up, 5% tolerance band rebalancing.The sample-based empirical utility shortfall

is reduced by 22%. The benefits for this method are reduced from the quadratic utility case primarily

because less rebalancing is needed overall because the power utility portfolio has the lowest variance.

Note that even though tolerance bands do better than annual rebalancing in this example (and also for

quadratic utility, but not for log wealth), this should not necessarily be taken as an indicator that tolerance

bands are a superior method to periodic rebalancing. Betterperformance can be obtained by tweaking

the threshold parameter or the periodicity of rebalancing.For instance, setting the rebalancing time to

two years for the power utility case results in an expected loss of 6.32 bps per annum, a savings of 1.74

bps over the annual strategy. This is achieved by accruing more than twice as much expected suboptimal

risk-adjusted return (2.21 bps versus 1.03 bps), but also reducing trading costs by 29% (4.11 bps versus

5.81 bps). A more exhaustive search of possible fixed-interval rebalancing strategies could presumably

yield an even better result.
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D. Log Wealth Utility

For the log wealth utility case, the results are shown in Table VI. Again, our expected loss is 30% less

than the best alternative (annual rebalancing). And the average simulated utility deficit is also 30% less

than annual rebalancing. This is a clear win as we tie for the highest net return while we have the lowest

standard deviation (except for the no rebalance case where in many cases, the high-variance/high-return

assets become small quickly, and without rebalancing, we are stuck in low-variance/low-return assets).

You can see the effect of the higher-variance portfolio in the trading cost numbers for the 5% Tolerance

method. In the quadratic case, the trading costs are only marginally higher than the annual rebalance

method. But in the log wealth case, they are 49% higher because the tolerance bands are breached more

often. It’s possible that better performance could be achieved by loosening the tolerance band as there

is currently very little loss to portfolio suboptimality.

E. Computational Complexity

To provide some information regarding the computational complexity of our approach, we first state

that we allow on the order of 15 possible weights for each asset. For five assets, we have an observation

space of approximately 750,000 points (we must develop the optimal policy for each point). Our current

implementation processes around 600,000 points per hour ona single PC (this problem can be easily

parallelized; so, the total processing time also depends onthe number of machines available). Thus, the

run-time estimate for five assets is 75 minutes. If we assume the possibility ofM different weights for

an additional asset, the addition of this asset into our N-asset model would increase computation by a

factor of M . Note that this is detailing the computation for learning the optimal policy. Once that is

done, actually applying the policy is very fast.

F. Alternate Cost Functions

Before we complete this section, we address the possibilityof a different trading cost function. In

particular, while the numbers used are consistent with trading costs cited in other research papers [4],

some may wonder if the results would be different for alternate trading costs. Table VII shows the results

when we reduce the proportional trading costs in half and apply it to the quadratic utility strategy. We do

only 20% better in expected cost, and 21% better in average utility, down from a 30% advantage with the

original costs. Transaction costs for the other methods arecut in half, while suboptimality remains the

same. Because in the original version transaction costs ranged from 82% of the aggregate cost for annual

rebalancing to 100% of the cost for monthly rebalancing while they were only 70% for our method. If
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(a) (b) (c) (d) (e) (f)

Trading Suboptimality Aggregate Net Standard Utility

Cost Cost Cost Returns Deviation Shortfall

(bps) (bps) (bps) (%) (%) (utils x 104)

Ideal 0.00 0.00 0.00 7.45 14.84 0.00

Optimal DP 2.64 0.87 3.51 7.42 14.85 3.42

No Trading 0.00 71.72 71.72 6.77 14.96 71.36

5% Tolerance 3.69 0.70 4.39 7.41 14.84 4.35

Monthly 11.83 0.00 11.83 7.34 14.84 11.86

Quarterly 6.84 0.28 7.12 7.38 14.85 7.44

Annual 3.42 1.55 4.97 7.43 14.94 4.83

TABLE VII

QUADRATIC UTILITY (α = 1.5): TRADING COSTS, NON-OPTIMAL UTILITY COSTS, AND AGGREGATE COST USING SIX

DIFFERENT TRADING STRATEGIES ON FIVE RISKY ASSETS SIMULATED OVER A 10 YEAR PERIOD10,000TIMES.

TRANSACTION COSTS ARE HALVED FROM THE PREVIOUS EXPERIMENTS.

our transaction costs were simply cut in half and we did not alter our trading strategy, we would expect

the aggregate cost to decline by 35%. It actually declines by39% because we adjust our strategy to trade

more frequently and incur smaller suboptimality penalties.

VI. CONCLUSION

Thead hoc methods of periodic and tolerance band rebalancing providesimple but suboptimal ways to

rebalance portfolios. Calendar-based approaches rely on the fact that, on average, we expect the portfolio

to become less and less optimal as time goes on, but they do notuse any knowledge about the actual

state of the portfolio. The tolerance band approach does use the current portfolio to make a decision, but

there is no sense of what the proper tolerance band setting is, or even how to choose it. In this work, we

have shown that by formulating the rebalancing problem as anoptimization problem and solving it using

dynamic programming, we reduce the overall costs of portfolio rebalancing. We have demonstrated that

the reduced costs hold for different investor risk preferences. Namely, we have compared the performance

of our technique with others for three different utility functions: quadratic, log wealth, and power utility.

The costs of transactions are much more tangible than those for being suboptimal. However, through

the use of certainty equivalents, we have provided a method that reasonably quantifies the cost of being
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suboptimal. Our simulations have confirmed that this optimalmethod provides gains over the best of the

traditional techniques of rebalancing.

It is worth noting that in our analysis we assume returns overdifferent intervals are independent. It

has been discussed in the literature that mean reversion mayexist. Under such circumstances, we expect

our method to perform even better in comparison with periodic rebalancing because our algorithm would

likely rebalance even less frequency.

Several extensions exist from our work. First, we may want to consider affine transaction costs. This

model is appropriate if we believe that there is a fixed cost to making each and every transaction. Such

an adjustment would likely favor dynamic trading methods over periodic rebalancing. Next, we may

want to examine rebalancing over taxable portfolios. Assetmanagers of such funds have the additional

consideration of tax consequences when a decision to transact needs to be made. The relaxation of the

short sales constraint is another possible extension to thework. Although many tax-deferred funds do not

allow short sales, several either explicitly do allow shortselling or implicitly participate in short sales

through investments into hedge funds.

In our work, we assume an instantaneous rebalancing at the end of each month. We may want to

incorporate more general trading models which consider theeffects of price impact. Finally, for the

multi-asset case, we search a one-dimensional policy spacerepresenting portfolios which are a linear

combination of the current portfolio and the target portfolio. We ideally want to search over the entire

space of possible portfolios around the optimal portfolio.This would be particularly useful when trading

costs have a fixed component. In these situations, it may be better to trade on only a subset of assets

rather than a portion of all asset classes.
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APPENDIX I

EFFICIENT FRONTIER USINGMEAN-VARIANCE OPTIMIZATION

Computing mean-variance efficient frontiers is a relativelystraightforward process. This is an essential

part of computing optimal portfolios for the non-normal returns or non-quadratic utility cases in order to

avoid using full-scale optimization. We solve a series of quadratic programs [18], each minimizing the
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variance for a given expected portfolio returnµp. Because we did not allow short sales, the optimization

problem has the following form:

minw w′Λw

s.t. w′µ = µp,
∑

i wi = 1, w ≥ 0,

(11)

where w are the unknown portfolio weights,Λ is the covariance matrix of the available assets and

µ is the vector of expected asset returns. This optimization can be efficiently performed using Matlab’s

Quadprog.m function. For the quadratic utility function, it is not necessary to compute the entire efficient

frontier. The optimal weights can directly be determined by solving a different quadratic program:

maxw w′µ − α
2
w′Λw

s.t.
∑

i wi = 1, w ≥ 0.

(12)
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