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Abstract
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. INTRODUCTION

Institutional money managers develop risk models and @dtpartfolios to match a desired risk/reward
profile. Utility functions provide one method for modelingette risk preferences. Implicitly determined by
the views of trustees or directors, utility functions yieldarget portfolio which is a set of optimal weights
for different asset classes. Given the fact that differasetclasses can exhibit different rates of return,
a manager cannot maintain this target of weights over timout active rebalancing. Furthermore,
managers also must rebalance if the weights in the targetoporare altered. This occurs when the
model for expected returns of asset classes change or kprdfle is altered (as indicated by a change
in the utility function).

Most academic theory ignores frictional costs and assuhssatportfolio manager can simply readjust
their holdings dynamically without any problems. In praetitrading costs are non-zero and affect the
decision to rebalance. The transactions costs involve thealacost paid for the trades as well as the
cost of manpower and technological resources. If the trditses costs exceed the expected benefit from
rebalancing, then no adjustment should be made. Howevénputi any quantitative measure for this
benefit, we cannot accurately determine whether or not tetrad

Conventional approaches to portfolio rebalancing inclpdeodic and tolerance band rebalancing [1],
[2]. With periodic rebalancing, the portfolio manager adgithe current weights back to the target weights
at a consistent time intervak.¢., monthly or quarterly). The drawback with this method is ttratling
decisions are independent of market behavior. So rebalgmaay occur even if the portfolio is nearly
optimal. Tolerance band rebalancing requires managershalance whenever any asset class deviates
beyond some pre-determined tolerance bagl, (+5%). When this occurs, the manager fully rebalances
to the target portfolio. While this method reacts to marketveaments, the threshold for rebalancing is
fixed, and the process of rebalancing involves trading alvibg back to the optimal portfolio.

Previous research on dynamic strategies for asset allocgg]chas established the existence of a no-
trade region around the optimal target portfolio weights [fithe proportions allocated to each asset at
any given time lie within this region, trading is not necegs&lowever, if current asset ratios lie outside
the no-trade region, Leland has shown that it is optimal tdetdaut only to bring the weights back to the
nearest edge of the no-trade region and not all the way tcatigettratios. The optimal strategy has been
shown to reduce transaction costs by approximately 50%.adeny the full analytical solution involves
a complicated system of partial differential equations inltiple dimensions.

Mulvey and Simsek [5] have modeled the problem of rebalaniringe face of transaction costs as a
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generalized network with side conditions and developedlgorighm for solving the resulting problem.
Meanwhile, Mitchell and Braun [6] have described a method fioding an optimal portfolio when
proportional transactions costs have to be paid. More tBgddonohue and Yip [1] have confirmed the
results of Leland [4] and have characterized the shape aprd$ithe no-trade region and compared the
performance of different rebalancing strategies.

In this paper, we present an approach that explicitly weitghasaction costs and tracking error
costs. We define a cost for a suboptimal portfolio using caigaéquivalents [7], and we use dynamic
programming to develop a policy that trades only when the gbgrading is less than the cost of doing
nothing. In addition, given a decision to rebalance, we dbemforce a constraint of rebalancing to the
optimal portfolio. The importance of relaxing this congtitais that in many situations, the cost of fully
rebalancing is more than the benefit obtained. We show thainetinod performs better than traditional
methods of rebalancing and is robust to model error. Notewleaassume that the portfolios are either
tax-free or tax-deferred, which is the case for endowmattarities, pension funds, and most individual
retirement funds.

In Section II, we discuss utility functions and the method ghamic programming. We introduce
certainty equivalents and discuss how we use them to tragts @nd determine our optimal rebalancing
strategy in Section Ill. We then demonstrate the rebalanpiegplem on a simple two-asset example in
Section IV to illustrate our algorithm and provide some siengénsitivity analyses. Section V examines
the more general case of mean-variance optimization onipteulassets over long periods of time. We

conclude the paper in Section VI.

[I. BACKGROUND

A. Utility Functions

Evaluating individual preferences to risk and return and ingalcorresponding portfolio allocation
decisions is a difficult task. Investment professionals neethalyze various factors to develop portfolios
that allow clients to reach their investment goals whileingkinto account risks associated with bear
markets and singular events such as crashes.

No single portfolio can meet the needs of every investor. &ationed in the introduction, one way to
specify an investor’s risk preference is through the usetibfyufunctions [8]. A utility function indicates
how much satisfaction (utils) we get for a given level of ratu. Clearly, most people prefer higher
levels of return to lower levels of return, so generallyittifunctions monotonically increase with If

the marginal utility decreases with(i.e., utility grows sublinearly), then an individual is said te kisk
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Utility Function Expected Utility

Quadratic | fq(z) =2 — (z — x0)” Ug(pt0) = o — S0°

Log wealth | fi(z) = log(1 + z) Ui(p, 0) = log(1 + 1) — 5%z

2

TABLE |
UTILITY FUNCTIONS AND THEIR CORRESPONDING APPROXIMATE EXPETED UTILITIES USED. THE UTILITY FUNCTIONS f;
ARE EXPRESSED IN TERMS OF THE RETURN. THE EXPECTED UTILITY FUNCTIONSU; ARE SPECIFIED IN TERMS OF THE

MEAN RETURN g AND THE STANDARD DEVIATION . FOR QUADRATIC UTILITY, « IS THE RISK AVERSION PARAMETER

averse. Numerous other risk characteristics can be imparted girahe shape of the utility function. A
manager then chooses portfolio weightsso that expected utility is maximized.

Because future returns are unknown, we need to use expetiligdta create an optimal portfolio or
to decide on a rebalancing policy. It has been shown by LevyMarkowitz [9] that for most relevant
utility functions, this expected utilityJ can be approximated using truncated Taylor series expan$io
be a function of mean and standard deviatioi, o).

In Table I, we list three utility functions and the corresdiong expected utilities that we use [10]. For
each utility, f;(x) for i = {q,1,p} (whereq indicates quadratid, indicates logarithmic, ang indicates
power) represents the utility in utils given a retuthwhich we also refer to as the empirical utility.
U;i(u,0) for i = {q,1,p} is the expected utility. Figure 1 plots the three empiricdlitytfunctions as
a function of return. The relative difference, not the absohalue, in utility for differentx is what is
important (we could scale the utility functions withoutexdfing the corresponding optimal portfolio).

Quadratic utility is a commonly used function, and usingnitpiortfolio construction is akin to doing
standard mean-variance optimization. Regardless of wheaih not the assets are Gaussian-distributed,
the expected utility only involves the first two moments, sg higher order moments are ignored. The
a parameter can be adjusted to indicate risk tolerance. Aetangmber indicates that an investor is
more risk averse. One main difficulty with quadratic utility that it has the odd behavior that for a
large enough return, it i®o risk averse and the utility function actually prefers a deraleturn because
Iangofq(x) = —oo. This behavior begins at = z( + é the maximum of the quadratic function. The log
wealth and power utility functions do not exhibit this betoayv

Even though it is true that the expected utility can be wrijtest in terms of the mean and variance,
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Fig. 1. Plots of the quadratic utility (for two differet’s), log wealth utility, and power utility as a function of returns.

the expression shown fdr,(u, o) is only an approximation. The true expression is:

«

Uq(p,0) = = 5 (0% + (1 = 20)*). (1)

Note that if we hada priori knowledge of the portfolio return:, we would just choose:y = p.
Unfortunately,u is a function of the portfolio weights), so we cannot fix it ahead of time. In the typical
operating regimey(w) ~ u(w*) because we would typically rebalance before the portfdiesome too
unbalanced. So if we choosg = u(w*), then the(u —z¢)? term in (1) is small, andJ, as a reasonable
approximation to the true expected utility. This leaves amsimpler expected utility function (especially
in terms of ).

The derivation of the expected utility functions for log wibend power is non-obvious. Let's examine

log wealth utility. We can expand the utility function aralithe pointz = p using a Taylor series:

fila) =10g(1 4+ 2) = log(1+ )+ = f{(1+ ) — )+ o f{ O+ ) — )+

e G Ok
T+p 200+p)?2 @

~ log(1+ p)+
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Thus we see that

Ulp,0) = Ellog(1 + )]

v—p  (v—p)?
T+p  2(1+ p)?

0.2

21+ p)?

Additional terms of the Taylor expansion may be used to imprthe approximation. These will then

~ E|log(l+pu)+

= log(1+p) -

involve the skewness and the kurtosis and other higheraraenents. A similar method is applied to

derive the approximation for power utility.

B. Dynamic Programming

Dynamic programming [11], [12], [13] is an optimization ketque that finds the policy that minimizes
expected cost given a cost functional and a dynamic moddiaté Hehavior. At time, w; is our state,

u IS our policy, andn; is the state uncertainty. The state transition is defined byrlaitrary functionh:
wy1 = h(wy, ug, ne), 3)

wherew,; represents the new state which is influenced by the prior sigtéhe action taken:;, and

the uncertainty in the system dynamies We write the cost functional recursively as:

Ji(we) = E[G(we, ug, ne) + Je1 (wes1)] (4)

whereG is the cost for the current period add is the so-calleccost-to-go function. J; is the expected
future cost from¢ onwards given all future decisions. So, the cost at any giaxiog is the expected
cost fromt to ¢ + 1 along with the expected cost frota- 1 onwards. At each time, the optimal strategy

is to chooseu; such that the cost is minimized:

Ji (we) = min - E[G(wy, ug, ne) + Jer1(werr)] - (5)

Ut
Equation (5) is the discrete-time Bellman Equation. Assuntgiogvergence, this recursion approaches a
fixed point such thafi} (w) = J;, (w) = J*(w). The challenge is therefore to determine the cost-to-go
valuesJ*(w). Once these values are known, the optimal rebalancingidedis to choose the policy;
that minimizes (5).
We can determine the cost-to-go values using a techniqledeal ue iteration. The idea behind value
iteration is to choose an arbitrary set of cost-to-go valiy¢s)) for some timet that we imagine to be

very far in the future. We then repeatedly apply (5) to obtadst-to-go values successively closer to
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the present. After a sufficient number of iterations, we wilpepach a steady-state, and the cost-to-go

values should converge to the optimal valuésw).

I1l. OPTIMAL REBALANCING USING DYNAMIC PROGRAMMING

In this section, we investigate optimal rebalancing stiiet for portfolios with transaction costs. In
general, we consider a multi-asset problem where we aren gimeoptimal portfolio consisting of a set
of target portfolio weightsw* = {wj,...,wy}, where N is the total number of assets. The optimal
strategy should be to maintain a portfolio that tracks thénogd portfolio as closely as possible while
minimizing the transaction costs.

We consider a model where we observe the contents of theoportf; at the end of each month. At
that point, we have the option of rebalancing the portfalie. @pply our policy, or controk;). Thus, the
portfolio at the beginning of the next monthig + u;. Then we assume normal returns in the process
noisen,. We use a simple multiplicative dynamic model so that; = (1 + n¢)(w; + u;), although in
general,w; 1 can be an arbitrary function aby, u;, andn,.

In general, the decision to rebalance should be based ors@deoation of three costs: the tracking error
associated with any deviation in our portfolio from the ol portfolio, the trading costs associated with
buying or selling any assets during rebalancing, and thearp future cost from next month onwards
given our actions in the current month. The optimal strategyadhically minimizes the total cost, which
is the sum of these three costs.

To apply dynamic programming, we must specify the cost foncin the Bellman Equation. In our
case, we write:

E [G(wt, Ut, nt)] = T(ut) + e(wt + ut), (6)

where7(u;) is the trading cost associated with applying our rebalandecisionu;. This can include
tangible costs such as commissions and market impact, butlsa model indirect costs such as employee
labor. ¢(-) represents the suboptimality cost, the cost of not havingmimal portfolio. e(w; + u;) =0

wheneverw; + u; = w* (i.e. chooseu; so that we rebalance to the target portfolio); otherwige, > 0.

A. Modeling Tracking Error using Certainty Equivalents

Note that the cost-to-go values, and hence the optimakgyatvill depend on the cost functions-)
ande(-) chosen. In this section, we discuss strategies for modélagking error.
In the certainty equivalence approach, we model the invegtoeferences using a utility function (see

Section II-A). For any portfolio weights), we can express the expected utility @’ w, w? Aw). We
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observe that there exists a risk free rate (which we will derasrcz(w)) that produces an identical
expected utility. We therefore calbz(w) the certainty equivalent return for the weightsw. The condition
for this isU(rc g, 0) = U(u?w, w? Aw). The certainty equivalents for the three expected utilityctions
that we are using are:

1) Quadraticrcg(w) = Ug(pw, w Aw)

2) Log wealth:rcg(w) = exp(Uy(p"w, w? Aw)) — 1

3) Powerirop(w) =1/(1 — Up(pfw, w? Aw)) — 1.

One interpretation of the certainty equivalent then is assk-adjusted rate of return given the risk
preferences embedded in the utility function.

If we hold a suboptimal portfoliav, the utility of that portfolioU(w) will be lower thanU(w*), with a
correspondingly lower certainty equivalent return. We g#arpret this as losing a riskless return (equal
to the difference between the two certainty equivalent®r @mne period, corresponding to the penalty
paid for tracking error. Therefore, under the certainty egjeince approach, the tracking error has the

cost function

e(w) =reg(w*) — rog(w). @)

The reason why we use a certainty equivalent is because inamirfenction,(-) and e(-) must
have commensurate values. We know that the cost will be mgesf dollars or basis points or some
other absolute measure. It is more straightforward to thtmvert portfolio tracking error into a similar
absolute measure using certainty equivalents rather tlyargtto express the trading costs in terms of

diminished expected utility.

B. Modeling Transaction Costs

Assume that we have a portfolio and we want to go to another portfolio’. The simplest model
for transaction costs is simply to assume a linear cost. Utide model, we assume that for assete

pay a transaction cost of per dollar to buy or sell the asset. Under this model,

T(wlvw) = CT|w/_w|> (8)
wherec! = [c1, ..., cn] is the vector of transaction cost coefficients. A variant & lihear cost model,
C(w', w) = e max{w’ — w,0} + L max{w — w’,0}, 9)

allows for different costs to buyc{) and sell ¢_) assets.
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Building on the linear cost model, we can also allow for fixedtsan rebalancing as well. This model
discourages frequent rebalancing and can be used to mageslghificant dislocation costs associated

with transferring assets from one manager to another. Thideinman be written as
C(w', w) = e max{w’ —w,0} + ¢ max{w — w’,0} + C?I(w —w'), (10)

wherecy is the vector of fixed costs associated with trading each ,aasdtthe indicator functiod ()

is 1 if x > 0 and O otherwise.

IV. TwWoO-ASSETMODEL

To introduce the problem of portfolio rebalancing, we firshsider an example involving two risky
asset classes. The benefits of the two risky asset model arda¢haptimal portfolio can be computed in
closed form (see [14] for a derivation), we can visually ek@the changes in portfolio weights (since a
single asset’s weight represents the full description afpmrtfolio), and the parameters are few enough
that we can easily perform sensitivity analyses. We follbig example with extension simulations of a
multi-asset model.

We assume that we can invest in (1) US Equity or (2) Private Equiy assume that returns are
normal, so the mean and covariance statistics sufficiently chaiaetéhe assets. We obtaih84%
and 12.76% expected annual returns for US Equity and Private Equity,easely, based on historical
observations, and acquire the covariances from Terdtaar [16]. Specifically, they cite that US Equity
has standard deviation of 12.80% annually, while Private fgchas standard deviation of 21.00%. The
correlation coefficient between the two assets is -0.46. iGthés information, we create the efficient

frontier (Figure 2).

A. Smulation

For brevity, we only consider quadratic utility in this sect Suppose the risk aversion parameter
is 0.33. Using this assumption, the optimal portfolio balancelisd0% in US Equities and9.00% in
Private Equity. To provide an example of our rebalancing nthee simulate the returns of the two
equities over a ten year period, assuming normal distobudif returns with means and covariance as
described earlier. Computationally, we obtain a randompdarfrom the normal distribution for each

month of our simulation.

!Because we consider monthly data, a normal assumption is reasoRablenger time periods, lognormality would be a
better assumption.
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Fig. 2. Efficient frontier of two risky asset case with the optimal portfobo duadratic utility & = .33) labeled.

Figure 3 shows how the portfolio weight of US Equities moves @ree 120 month sample path. With
no rebalancing (Figure 3(a)), the weight drifts from the wyati amount 0f41.00% down to under0%,
resulting in large suboptimality costs (the exact costs dascribed below). Our optimal rebalancing
strategy (Figure 3(b)) rebalances only when necessary.nBurionths40 to 45 and 90 to 110, the
portfolio rebalances nearly every month to handle sharmgés in the portfolio, while for month45
to 80, the lack of strong market movements in either directioovelus to avoid any transaction costs.
The market movement during the times cited can be seen by ekagthe change in portfolio weights
in Figure 3(a) where there is no rebalancing.

Table 1l shows the costs of trading using different straegilrading costs are assumed to be 20 bps
for buying or selling public equity, and 40 bps for buying @llisig private equity. The suboptimality
cost was determined using the idea of certainty equivaldfdas each portfolio, a certainty equivalent
can be computed (in terms of monthly returns). The differelnesveen the certainty equivalent of a
non-optimal portfolio and that of the optimal portfolio igfthed as the cost of not being optimal.

From the table, we observe that the aggregate monthly costrniBnined by our method. Over a
ten year period, the cost of our algorithm, assuming $100aniinvested, is $281,300. The next best
method for this example, that of yearly rebalancing, co&37§L00. The results for each rebalancing

method make intuitive sense. Monthly rebalancing leadsotaleviation from optimality, but at the cost
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(a) Portfolio Weights with No Rebalancing (b) Optimal Rebalancing
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Fig. 3. Plots of US Equities weighting in the two asset example using diffeedatancing models. The vertical lines indicate
months where rebalancing was done (for monthly rebalancing, this is dnsittee trading occurs in every month).

Trading Suboptimality | Aggregate

Cost (bps)| Utility Cost (bps) | Cost (bps)
Optimal DP 18.14 9.99 28.13

No Trading 0.00 1509.74 1509.74
5% Tolerance 17.59 16.83 34.43
Monthly 62.61 0.00 62.61
Quarterly 37.78 1.74 39.52
Annual 20.29 13.42 33.71
TABLE 1l

TRADING COST, SUBOPTIMALITY COST, AND AGGREGATE COST USING SIX DIFFERENT REBALANCING STRATEKES ON TWO

RISKY ASSETS OVER A TEN YEAR PERIOD
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Fig. 4. Sensitivity analysis on mean, standard deviation, and correlatiomd asset example. The vertical line indicates the
rate used by the rebalancing strategies. (a) Sensitivity to mean rate fagui§. (b) Sensitivity to mean rate for Private Equity.

(c) Sensitivity to variance for US Equity. (d) Sensitivity to variance fav&e Equity. (e) Sensitivity to correlation between US

and Private Equity.

of high trading fees. Infrequent trading yields smalleding costs, but higher non-optimality certainty
equivalent costs. Our method of rebalancing whenever tls¢ @onon-optimality exceeds the trading

costs allows us to adequately trade-off the cost of nomugify with that of trading.

B. Sensitivity Analysis

So far, we have assumed that the model for each asset is a&durgiractice, this is usually not the
case — mean and variance of the returns of each asset as wbk @srrelation between assets must
be estimated (e.g. using historical observations), antetieeusually some error associated with each
estimate. Errors in the parameter estimate will cause imac@s in the cost-to-go values obtained from
the dynamic program, leading to suboptimal rebalancinghls section, we investigate the impact of
errors in each of these parameters on the rebalancinggstrate

We investigate a total of three parameters — mean, variamzk correlation. In each simulation, two
parameters are held constant while the third is allowed tg &eound the estimated value. The costs-to-

go are used to calculate the estimated values. We chawxctée performance of the strategy when the
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estimated parameters differ from the actual parametensc&élendar and tolerance band strategies, we
assume that they would also rebalance to an optimal part@@iculated from the estimated parameters.
We expect the performance of all strategies to degrade whenparameter estimate is inaccurate.

However, the main issue is whether some strategies arévedyamore robust to inaccuracies than others.

We expect our approach to be most sensitive to model err@ausecthe model parameters are used to
both generate the target portfolio and the rebalancingestyaThe other methods only rely on the model

for the target portfolio.

First, we assume that the variance and correlation are ¢lyrrestimated and investigate estimation
errors in the mean. For each point, 100 sequences of ten yeathiy returns were generated, and
the performance of the dynamic rebalancing strategy wasaged over each sequence. The dynamic
rebalancing strategy was reasonably insensitive to eimastimating the mean: from Figure 4(a) and (b),
we can observe that the DP approach outperforms all othetlegies over a range of several percentage
points of inaccuracies in the estimation. We can conclud¢ ds long as the mean can be accurately
estimated to within a few percentage points, the dynamignamming-based approach is still the best
choice. From Figure 4(c) and (d), we see that the dynamic pnagiag approach again outperforms the
other approaches even if there are large errors in estightiim standard deviation — it remained the best
performer even given inaccuracies in the standard deniaticGeveral percentage points per year. Finally,
in Figure 4(e), we observe that the dynamic programming ambrds insensitive to errors in estimation
of the correlations between assets — the approach outperfalt others in a wide range of correlations.

This suggests that correlations do not need to be accurattiypated for the purposes of the DP.

V. MULTI-ASSETMODEL

Now that we have described and analyzed the simple two-assdel, we proceed to examine the
general case of N risky assets. Unlike the two-asset seerthg optimal portfolio cannot be computed
in closed-form for anyN > 2. In this section, we consider the case of five risky assetsaasdrt that
another choice ofV > 2 would proceed similarly with the main difference being cartgtion time.
For our analysis, we concentrate on generating optimafgims with five asset classes: US Equity,
Developed Market Equity, Emerging Market Equity, Private Equétgd Hedge Funds. In Table llI,
we show the mean and standard deviation of each asset ctasg with higher order statistics such
as skewness and kurtosis for historical monthly returnsnfidanuary 1990 to March 2004. Normally
distributed data have zero skewness and a kurtosis of 3. Mdhe assets exhibit approximately normal

returns with the exception of Hedge Funds, which has highokigtindicating a heavy-tailed distribution.
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Index as Proxy Mean Std. Skewness Kurtosis
(Source) Return (%) | Dev. (%) | (normal = 0) | (normal = 3)
US Equity Russell 3000 (Datastream) 6.84 14.99 -0.57 3.67
Developed Mkt Equity| MSCI EAFE+Canada (Datastream)) 6.65 16.76 -0.20 3.27
Emerging Mkt Equity MSCI EM (Datastream) 7.88 23.30 -0.73 4.71
Private Equity Wilshire LBO (Bloomberg) 12.76 44.39 -0.40 3.82
Hedge Funds HFR Mkt Neutral (Bloomberg) 5.28 10.16 -0.83 7.04

TABLE 1l

ANNUAL MEAN RETURNS, ANNUAL STANDARD DEVIATIONS, SKEWNESS AND KURTOSIS FOR THE ASSET CLASSES

us Developed| Emerging | Private | Hedge
Equity | Markets Markets | Equity | Fund
US Equity 1.00 0.46 0.45 0.64 0.29
Developed Markets| 0.46 1.00 0.42 0.38 0.09
Emerging Markets|| 0.45 0.42 1.00 0.40 0.21
Private Equity 0.64 0.38 0.40 1.00 0.36
Hedge Fund 0.29 0.09 0.21 0.36 1.00
TABLE IV

CORRELATION COEFFICIENT MATRIX.

The correlation matrix used is shown in Table IV. Of the difetr assets, Private Equity provides the
most expected return, but has the greatest amount of riskh©other extreme, Hedge Funds have both
the least expected return and the least amount of variabilihe mean returns were provided by State
Street Associates and the variances and correlations warputed empirically from data acquired from
Datastream and Bloomberg.

It is known [10] that standard mean-variance portfolio myziation produces optimal portfolios only if
returns are normally distributed or if quadratic utilityassumed. Otherwise, full-scale optimization must
be performed to compute optimal portfolios when using maseaaced utility functions such as log wealth
or power utility. However, recent work by Cremaeatsal. [17] indicates that except when returns are highly
non-normal, it is sufficient to perform mean-variance optimtion on a Markowitz-style approximate

expected utility function (see Section 1I-A) in terms of juke mean and standard deviation. They show
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Fig. 5. Efficient frontier and optimal portfolios for the different utility fetions discussed. (0) indicates the optimal portfolio
for power utility. (+) indicates that for quadratic utility with = 1.5. (*) indicates the optimal portfolio for log wealth utility.

that the performance of the resulting portfolios and théqgoerance of those generated from full-scale
optimization do not differ significantly. When performingghapproximate mean-variance optimization,
the optimal portfolio lies on the efficient frontfef15]. Therefore, to construct optimal portfolios for
different utility functions, we first compute the efficient fitter by solving a quadratic programming
problem and then search over those portfolios to find the ofie tve highest expected utility.

Figure 5 displays the efficient frontier for the five asset daswhen short sales are not allowed.
Searching over this frontier for each of the utility functsoresults in the optimal portfolios as indicated

in the figure with the weights shown in Table V. These weightdla@eptimal weights we use throughout
our analysis.

A. Results
Table VI show the results of our dynamic programming aldgnitand some existing rebalancing

methods on Monte Carlo simulations. We generated 10,00@lsapaths, each for ten years of monthly

’Risk-averse expected utility functions are monotonically increasing in tefmeturn and monotonically decreasing in terms
of risk. Hence if a portfolio is not on the efficient frontier, there existsoafplio with equivalent return and less risk or more
return and the same risk. Therefore this portfolio cannot be optimal.
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Quadratic {=1.5) Logarithmic Power

US Equity 0.194 0.160 0.210

Developed Market Equity 0.222 0.240 0.213

Emerging Market Equity 0.185 0.275 0.143

Private Equity 0.156 0.292 0.093

Hedge Funds 0.243 0.033 0.341
TABLE V

OPTIMAL PORTFOLIO WEIGHTS FOR DIFFERENT UTILITY FUNCTIONQ](M, o’).

return data. Each month is sampled independently from thersitiso we do not model effects such
as trends, momentum, or mean reversion. For each sample watkimulate the various rebalancing
methods by generating a return value for each month thattisfngansaction costs.

We measure performance as a shortfall relative to an idehliebalancing strategy which rebalances
to the optimal portfolio every month for free. All real wortdrategies will suffer shortfalls due to trading
cost, suboptimal portfolios, or both. We measure this $albrising the actual trading cost that we incur
(column (a)) and the decrease in certainty equivalent frben dptimal portfolio (column (b)). These
combine to give the aggregate shortfall in column (c).

Note that this aggregate shortfall is exactly what our dyicaprogramming algorithm is trying to
minimize. All of the real-world algorithms are really trygn(implicitly or explicitly) to minimize this
aggregate cost by trying to balance trading cost and subafity cost. At one extreme is monthly
rebalancing which has zero suboptimality cost but requirdst of trading to implement. At the other
extreme is no rebalancing which does not cost anything dinigacost to implement, but a severe penalty
is paid in terms of risk adjusted return. All of the other nueth fall somewhere in between.

The aggregate cost is perhaps a bit unsatisfying as a metranibe the risk-adjusted return component
is based omxpected month-to-month returns (certainty equivalents) rathanttiheactual returns observed
in the Monte Carlo simulation. Another approach to evaldhageresults is to then use the actual sample
returns. We can use the sample returns to compute the emnlpititity at each time period (using the
empirical utility functions in Table 1), and then take thergae average of this to obtain an average utility

shortfall (column (d)). Of course, since the data are emgfoaie expect the sample average shortfall and

SErgodicity certainly holds in our Monte Carlo simulations because we samgépémdently.
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(a) (b) (c) (d) (e) ()
Trading | Suboptimality | Aggregate Utility Net Standard
Cost Cost Cost Shortfall Returns| Deviation
(bps) (bps) (bps) (utils x 10%) (%) (%)
Quadratic Ideal 0.00 0.00 0.00 0.00 7.45 14.84
a=1.5 Optimal DP 4.04 1.72 5.75 5.55 7.40 14.86
No Trading 0.00 71.72 71.72 71.36 6.77 14.96
5% Tolerance|| 7.39 0.70 8.09 8.03 7.37 14.83
Monthly 23.66 0.00 23.66 23.72 7.22 14.84
Quarterly 13.68 0.28 13.96 14.28 7.32 14.85
Annual 6.84 1.55 8.39 8.24 7.40 14.94
Power Ideal 0.00 0.00 0.00 0.00 6.89 12.38
Optimal DP 3.47 1.21 4.67 4.43 6.87 12.48
No Trading 0.00 81.70 81.70 82.31 6.77 14.95
5% Tolerance|| 5.30 0.83 6.13 5.75 6.83 12.36
Monthly 20.05 0.00 20.05 19.96 6.69 12.38
Quarterly 11.59 0.18 11.78 11.90 6.77 12.39
Annual 5.82 1.02 6.84 6.64 6.84 12.46
Log Wealth Ideal 0.00 0.00 0.00 0.00 8.65 20.57
Optimal DP 4.87 2.26 7.13 7.09 8.57 20.49
No Trading 0.00 91.51 91.51 87.82 6.77 14.98
5% Tolerance|| 11.99 0.44 12.43 12.74 8.53 20.60
Monthly 28.14 0.00 28.14 28.18 8.37 20.58
Quarterly 16.25 0.40 16.65 17.13 8.49 20.59
Annual 8.06 2.17 10.22 10.18 8.57 20.67
TABLE VI

QUADRATIC (o = 1.5), POWER AND LOG WEALTH UTILITY : ANNUALIZED TRADING COST, NON-OPTIMAL UTILITY COST,
AND AGGREGATE COST USING SIX DIFFERENT TRADING STRATEGIESMOFIVE RISKY ASSETS SIMULATED OVER A TEN YEAR
PERIOD10,000TIMES. THE UNITS ON UTILS MULTIPLIED BY 10* (IN COLUMN (D)) ARE SIMILAR TO BASIS POINTS IN
COLUMNS (A)-(C). THIS IS OBVIOUS FOR THE QUADRATIC CASE WHERE THE CERTAINTY EQWALENT IS EQUAL TO THE
UTILITY. FOR THE OTHER TWO CASESTAKING A LINEAR APPROXIMATION AROUND x = 0 SHOWS THAT THE UTILITIES

ARE PROPORTIONAL TOz. SO, UTILS TIMES 10* PROVIDES A REASONABLE APPROXIMATION TO BASIS POINTS
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the expected shortfall to produce similar results.

In columns (e) and (f) we list the sample means and standandtoss of the strategies. These are
primarily illustrative to show the tradeoffs that diffeteebalancing strategies make. Most of the strategies
fare a bit worse than the idealized rebalancing strategyath bet returns and risk.

When comparing the results from the different utility fuoats, recall that each utility function has a
different risk level which in turn induces a different op#ihportfolio. This is why the net returns and

standard deviations (columns (e) and (f)) can vary so muain futility function to utility function.

B. Quadratic Utility

For the quadratic utility case shown in Table VI, we see thataptimal DP method performs 29%
better in terms of expected cost and 31% better in terms afageeutility over the next-best method,
5% tolerance bands. If we examine the costs, we see, as erpdabat monthly trading incurs no
suboptimality at the expense of high trading costs. The atkeme of no trading incurs an extremely
large suboptimality cost because over a ten year periodtsasan become quite unbalanced if unadjusted.
It also should be noted that our method can be thought of asiantig tolerance band approach. Thus,

since the 5% tolerance method is a subset of our algorithogritnever do better.

C. Power Utility

For power utility, the results are shown in Table VI. As withaglratic utility, our expected loss is
24% less than the runner-up, 5% tolerance band rebalantiregsample-based empirical utility shortfall
is reduced by 22%. The benefits for this method are reduced fnenguadratic utility case primarily
because less rebalancing is needed overall because the pikty portfolio has the lowest variance.

Note that even though tolerance bands do better than anelbalancing in this example (and also for
guadratic utility, but not for log wealth), this should naaessarily be taken as an indicator that tolerance
bands are a superior method to periodic rebalancing. Bpddormance can be obtained by tweaking
the threshold parameter or the periodicity of rebalanckay. instance, setting the rebalancing time to
two years for the power utility case results in an expectad laf 6.32 bps per annum, a savings of 1.74
bps over the annual strategy. This is achieved by accruing than twice as much expected suboptimal
risk-adjusted return (2.21 bps versus 1.03 bps), but aldocieg trading costs by 29% (4.11 bps versus
5.81 bps). A more exhaustive search of possible fixed-inteel@alancing strategies could presumably

yield an even better result.
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D. Log Wealth Utility

For the log wealth utility case, the results are shown in &aHl Again, our expected loss is 30% less
than the best alternative (annual rebalancing). And theageesimulated utility deficit is also 30% less
than annual rebalancing. This is a clear win as we tie for thbdst net return while we have the lowest
standard deviation (except for the no rebalance case wharany cases, the high-variance/high-return
assets become small quickly, and without rebalancing, wesarck in low-variance/low-return assets).
You can see the effect of the higher-variance portfolio im titading cost numbers for the 5% Tolerance
method. In the quadratic case, the trading costs are onlginaly higher than the annual rebalance
method. But in the log wealth case, they are 49% higher bectngstolerance bands are breached more
often. It's possible that better performance could be agtdyy loosening the tolerance band as there

is currently very little loss to portfolio suboptimality.

E. Computational Complexity

To provide some information regarding the computationahiglexity of our approach, we first state
that we allow on the order of 15 possible weights for eachtaf®e five assets, we have an observation
space of approximately 750,000 points (we must develop phienal policy for each point). Our current
implementation processes around 600,000 points per howr single PC (this problem can be easily
parallelized; so, the total processing time also dependfi®@mumber of machines available). Thus, the
run-time estimate for five assets is 75 minutes. If we assinmagossibility of M/ different weights for
an additional asset, the addition of this asset into our $&tamodel would increase computation by a
factor of M. Note that this is detailing the computation for learning tptimal policy. Once that is

done, actually applying the policy is very fast.

F. Alternate Cost Functions

Before we complete this section, we address the possilafitg different trading cost function. In
particular, while the numbers used are consistent withirigadosts cited in other research papers [4],
some may wonder if the results would be different for altegrteading costs. Table VII shows the results
when we reduce the proportional trading costs in half andyappo the quadratic utility strategy. We do
only 20% better in expected cost, and 21% better in averalijg,.down from a 30% advantage with the
original costs. Transaction costs for the other methodscaren half, while suboptimality remains the
same. Because in the original version transaction costgethftom 82% of the aggregate cost for annual

rebalancing to 100% of the cost for monthly rebalancing liiley were only 70% for our method. If
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(a) (b) (c) (d) (e) (f)
Trading | Suboptimality | Aggregate Net Standard Utility
Cost Cost Cost Returns| Deviation Shortfall

(bps) (bps) (bps) (%) (%) (utils x 10%)
Ideal 0.00 0.00 0.00 7.45 14.84 0.00
Optimal DP 2.64 0.87 3.51 7.42 14.85 3.42
No Trading 0.00 71.72 71.72 6.77 14.96 71.36
5% Tolerance|| 3.69 0.70 4.39 7.41 14.84 4.35
Monthly 11.83 0.00 11.83 7.34 14.84 11.86
Quarterly 6.84 0.28 7.12 7.38 14.85 7.44
Annual 3.42 1.55 4.97 7.43 14.94 4.83

TABLE VII

QUADRATIC UTILITY (o = 1.5): TRADING COSTS NON-OPTIMAL UTILITY COSTS, AND AGGREGATE COST USING SIX
DIFFERENT TRADING STRATEGIES ON FIVE RISKY ASSETS SIMULATE OVER A 10 YEAR PERIOD10,000TIMES.

TRANSACTION COSTS ARE HALVED FROM THE PREVIOUS EXPERIMENTS

our transaction costs were simply cut in half and we did nt#radur trading strategy, we would expect
the aggregate cost to decline by 35%. It actually decline89% because we adjust our strategy to trade

more frequently and incur smaller suboptimality penalties

VI. CONCLUSION

Thead hoc methods of periodic and tolerance band rebalancing praidele but suboptimal ways to
rebalance portfolios. Calendar-based approaches releofatt that, on average, we expect the portfolio
to become less and less optimal as time goes on, but they doseoany knowledge about the actual
state of the portfolio. The tolerance band approach doeshaseurrent portfolio to make a decision, but
there is no sense of what the proper tolerance band settiog &en how to choose it. In this work, we
have shown that by formulating the rebalancing problem agpdimization problem and solving it using
dynamic programming, we reduce the overall costs of paatfidbalancing. We have demonstrated that
the reduced costs hold for different investor risk prefeesn Namely, we have compared the performance
of our technique with others for three different utility fttions: quadratic, log wealth, and power utility.

The costs of transactions are much more tangible than thodsefog suboptimal. However, through

the use of certainty equivalents, we have provided a methadreasonably quantifies the cost of being



MIT WORKING PAPER 22

suboptimal. Our simulations have confirmed that this optimathod provides gains over the best of the
traditional techniques of rebalancing.

It is worth noting that in our analysis we assume returns aliferent intervals are independent. It
has been discussed in the literature that mean reversioreristy Under such circumstances, we expect
our method to perform even better in comparison with pecieedbalancing because our algorithm would
likely rebalance even less frequency.

Several extensions exist from our work. First, we may want tosimter affine transaction costs. This
model is appropriate if we believe that there is a fixed cost &king each and every transaction. Such
an adjustment would likely favor dynamic trading methodroperiodic rebalancing. Next, we may
want to examine rebalancing over taxable portfolios. Assahagers of such funds have the additional
consideration of tax consequences when a decision to tansads to be made. The relaxation of the
short sales constraint is another possible extension tainke. Although many tax-deferred funds do not
allow short sales, several either explicitly do allow sheetling or implicitly participate in short sales
through investments into hedge funds.

In our work, we assume an instantaneous rebalancing at ttheoeeach month. We may want to
incorporate more general trading models which consideretfifects of price impact. Finally, for the
multi-asset case, we search a one-dimensional policy smgresenting portfolios which are a linear
combination of the current portfolio and the target poitfoMe ideally want to search over the entire
space of possible portfolios around the optimal portfolibis would be particularly useful when trading
costs have a fixed component. In these situations, it may herkliettrade on only a subset of assets

rather than a portion of all asset classes.
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APPENDIXI
EFFICIENT FRONTIER USINGMEAN-VARIANCE OPTIMIZATION
Computing mean-variance efficient frontiers is a relativahaightforward process. This is an essential
part of computing optimal portfolios for the non-normalwets or non-quadratic utility cases in order to

avoid using full-scale optimization. We solve a series odpatic programs [18], each minimizing the
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variance for a given expected portfolio retysp. Because we did not allow short sales, the optimization

problem has the following form:

min,, w'Aw
(11)
st wWp=p,, d,wi=1 w>0,

where w are the unknown portfolio weights\ is the covariance matrix of the available assets and
1 is the vector of expected asset returns. This optimizationbeaefficiently performed using Matlab’s
Quadpr og. mfunction. For the quadratic utility function, it is not nessary to compute the entire efficient

frontier. The optimal weights can directly be determined blvieg a different quadratic program:

max,, w'p— Fw'Aw

(12)
st. Y ,wi=1w>0.
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