Stochastic Systems Group
Home Research Group Members Programs  
Demos Calendar Publications Mission Statement Alumni

SSG Seminar Abstract


Random Walks, Constrained Multiple Hypothesis Testing and Image Enhancement

Nikos Paragios
Ecole Centrale de Paris


Image restoration is a keen problem of low level vision. In this paper, we propose a novel - assumption-free on the noise model - technique based on random walks for image enhancement. Our method explores multiple neighbors sets (or hypotheses) that can be used for pixel denoising, through a particle filtering approach. This technique treats the denosing process as a dynamical system through a random walks approach and associates weights for each hypotheses according to its relevance and its contribution in the denoising process. Towards accounting for the image structure, we introduce perturbations based on local statistical properties of the image. In other words, particle evolution are controlled by the image structure leading to a filtering window adapted to the image content. Promising experimental results demonstrate the potential of such an approach.

Joint work with Noura Azzabou and Frederic Guichard.



Problems with this site should be emailed to jonesb@mit.edu