Stochastic Systems Group
Home Research Group Members Programs  
Demos Calendar Publications Mission Statement Alumni

SSG Seminar Abstract

Model-Based Recovery of Structure and Function from Medical Images

James S. Duncan, Ph.D.
Professor of Diagnostic Radiology
Biomedical Engineering and Electrical Engineering
Yale University

The development of methods to accurately and reproducibly recover useful quantitative information from medical images is often hampered by uncertainties in handling these data related to: image acquisition parameters, the variability of normal human anatomy and physiology, the presence of disease or other abnormal conditions, and a variety of other factors. This talk will review image analysis strategies that make use of models based on geometrical and physical/biomechanical information to help constrain the range of possible solutions in the presence of such uncertainty. The discussion will be focused by looking primarily at several problem areas in the realms of neuroanatomical structure analysis and cardiac function analysis, with an emphasis on image segmentation and motion/deformation tracking. The presentation will include a description of the problem areas and visual examples of the image datasets being used, an overview of the mathematical techniques involved and a presentation of results obtained when analyzing actual patient image data using these methods. Emphasis will be placed on how image-derived information and appropriate modeling can be used together to address the image analysis and processing problems noted above. In addition, a portion of the talk will be dedicated to discussing how these approaches could be compared and possibly unified into a more general framework.

Problems with this site should be emailed to