Stochastic Systems Group
Home Research Group Members Programs  
Demos Calendar Publications Mission Statement Alumni

SSG Seminar Abstract


Spatio-Temporal fMRI Signal Analysis
Using Information Theory

Junmo Kim
SSG Doctoral Student


Functional MRI is a fast brain imaging technique which measures the spatio-temporal neuronal activity. The development of automatic statistical analysis techniques which calculate brain activation maps from fMRI data has been a challenging problem due to the limitation of current understanding of human brain physiology. In previous work a novel information-theoretic approach was introduced for calculating the activation map for fMRI analysis. In that work the use of mutual information as a measure of activation resulted in a nonparametric calculation of the activation map. Here we show that, in addition to the intuitive information-theoretic appeal, such an application of mutual information is equivalent to a hypothesis test when the underlying densities are unknown. Furthermore we incorporate local spatial priors using the well-known Ising model thereby dropping the implicit assumption that neighboring voxel time-series are independent. As a consequence of the hypothesis testing equivalence, calculation of the activation map with local spatial priors can be formulated as mincut/maxflow graph-cutting problem. Such problems can be solved in polynomial time by the Ford and Fulkerson method. Empirical results are presented on three fMRI datasets measuring motor, auditory, and visual cortex activation. Comparisons are made illustrating the differences between the proposed technique and one based on the general linear model.



Problems with this site should be emailed to jonesb@mit.edu