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Abstract 
 

A Bayesian supply function equilibrium is characterized in a market where firms have 
private information about their uncertain costs. It is found that with supply function 
competition, and in contrast to Bayesian Cournot competition, competitiveness is affected 
by the parameters of the information structure: supply functions are steeper with more 
noise in the private signals or more correlation among the costs parameters. In fact, for 
large values of noise or correlation supply functions are downward sloping, margins are 
larger than the Cournot ones, and as we approach the common value case they tend to the 
collusive level. Furthermore, competition in supply functions aggregates the dispersed 
information of firms (the equilibrium is privately revealing) while Cournot competition 
does not. The implication is that with the former the only source of deadweight loss is 
market power while with the latter we have to add private information. As the market 
grows large the equilibrium becomes competitive and we obtain an approximation to how 
many competitors are needed to have a certain degree of competitiveness. 
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1. Introduction 

Competition in supply functions has been used to model several markets, in particular the 

spot market for electricity but also management consulting or airline pricing reservation 

systems. The models considered typically do not allow for private information.1 Private 

information on costs is a relevant situation in many instances where it is not realistic to 

assume that there is common knowledge on costs. Instead each firm has an estimate of its 

own costs and uses it, together with whatever public information is available, to make 

inferences about the costs of rivals. In this paper we study supply function competition 

when firms have private information about costs and compare it with Cournot 

competition, a leading modeling contender. Our aim is to explore the impact of private 

information on price-cost margins, competitiveness, and welfare. 

 

Competition in supply schedules has been studied in the absence of uncertainty by 

Grossman (1981) and Hart (1985) showing a great multiplicity of equilibria. A similar 

result is obtained by Wilson (1979) in a share auction model. Back and Zender (1993) 

and Kremer and Nyborg (2004) obtain related results for Treasury auctions. Some of the 

equilibria can be very collusive. 2  Klemperer and Meyer (1989) show how adding 

uncertainty in the supply function model can reduce the range of equilibria and even pin 

down a unique equilibrium provided the uncertainty has unbounded support.3 In this case 

the supply function equilibrium always lies between the Cournot and competitive 

(Bertrand) outcomes. Kyle (1989) introduces private information into a double auction 

for a risky asset of unknown liquidation value and derives a unique symmetric linear 

Bayesian equilibrium in demand schedules when traders have constant absolute risk 

aversion, there is noise trading, and uncertainty is normally distributed.  

 

                                                 
1  Exceptions are the empirical papers of Hortaçsu and Puller (2006) and Kühn and Machado (2004) in 

electricity. 
2  Back and Zender (2001) and LiCalzi and Pavan (2005) show how the auction can be designed to limit 

those collusive equilibria. 
3  In a linear-quadratic model this is a linear equilibrium. 
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The modeling strategy in this paper is to consider linear-quadratic payoffs coupled with 

an affine information structure, which admits common or private values, that yields a 

unique symmetric linear Bayesian supply function equilibrium (LBSFE). We do not need 

to introduce noise in the system. The characterization of a linear equilibrium with supply 

function competition when there is market power and private information needs some 

careful analysis in order to model the capacity of a firm to influence the market price at 

the same time that the firm learns from the price. Kyle (1989) pioneered this type of 

analysis in a financial market context introducing noise trading in order to prevent the 

market from collapsing.  

 

It is found that there is a unique LBSFE except in the pure common value case. This 

equilibrium is privately revealing. That is, the private information of a firm and the price 

provide a sufficient statistic of the joint information in the market. This means in 

particular that the incentives to acquire information are preserved despite the fact that the 

price aggregates information. We do not examine possible nonlinear equilibria. Linear 

equilibria are tractable, in particular in the presence of private information, and have 

desirable properties like simplicity.  

 

In the linear equilibrium supply functions are upward sloping provided that the 

informative role of price does not overwhelm its traditional capacity as index of scarcity. 

This happens when costs shocks are not very correlated and information precision not too 

low. In this case an increase in the correlation of cost parameters or in the noise in private 

signals makes supply functions steeper. Firms are more cautious when they see a price 

raise since it may mean that costs are high. The market looks less competitive in those 

circumstances as reflected in increased price-cost margins. Ignoring private cost 

information with supply function competition may therefore overestimate the slope of 

supply. This is not the case with Cournot competition, where competitiveness and the 

margin are not affected by the information parameters. When the information role of the 

price dominates its index of scarcity capacity supply functions slope downwards and 

margins are larger than the Cournot ones. This is in contrast of the results in Kyle (1989), 

and also in Wang and Zender (2002), where demand schedules always slope downwards. 
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The result implies, in particular, that –in contrast with Klemperer and Meyer (1989)– 

margins with supply function competition can be higher than the Cournot level. More 

surprisingly perhaps, as we approach the common value case margins tend to the 

collusive level. This happens at the unique linear equilibrium only for informational 

reasons and not because of the existence of a vast multiplicity of equilibria. Relaxation of 

competition due to adverse selection in a common value environment is also obtained in 

Biais et al. (2000). 

 

A welfare optimal allocation can be implemented by a price-taking Bayesian supply 

function equilibrium. This is so since at a LBSFE there is a deadweight loss only because 

of market power since the equilibrium is privately revealing. Typically the deadweight 

loss increases as we approach the common value case as long as signals are noisy. The 

welfare evaluation of the LBSFE is in marked contrast with the Cournot equilibrium in 

the presence of private information. The reason is that the LBSFE aggregates information 

and therefore, as stated, there is only a deadweight loss due to market power but not due 

to private information. The result is that in a large market with supply function 

competition there is no efficiency loss (in the limit) and the order of magnitude of the 

deadweight loss is 21/ n  where n is the number of firms (and the size of the market as 

well). This is also the rate of convergence to efficiency obtained in a double auction 

context by Cripps and Swinkels (2006). The welfare analysis in the supply function 

model contrasts thus with the one in models where there is no endogenous public signal 

such as the Cournot market in Vives (1988), the beauty contest in Morris and Shin 

(2002), or the general linear-quadratic set up of Angeletos and Pavan (2007). With 

Cournot competition we have to add a deadweight loss due to private information. A 

large Cournot market does not aggregate information (i.e. a large Cournot market does 

not approach a full information competitive outcome) and in the limit there is a welfare 

loss due to private information.  

 

A leading application of the model, as we will see in the next section, is to wholesale 

electricity markets. The model admits also other interpretations. The cost shock could be 

related to some ex post pollution or emissions damage which is assessed on the firm. 
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Before submitting its supply schedule a firm would receive some private information on 

this pollution damage. Still another interpretation of the shock would be a random 

opportunity cost of serving the market which is related to dynamic considerations. 

Revenue management deals with situations where the product, be it a hotel room, airline 

flight, generated electricity or tickets for a concert, has an expiration date and capacity is 

fixed well in advance and can be added only at high marginal cost.4 The problem arises 

then of predicting the opportunity cost of sale (the value of a unit in a shortage situation). 

A high opportunity cost is an indication of high value of sales in the future. In this case a 

firm would have a private assessment of the opportunity cost with which it would place 

its supply schedule. 

 

The plan of the paper is as follows. Section 2 introduces the application to electricity 

markets. Section 3 presents the supply function model with strategic firms and 

characterizes a linear Bayesian supply function equilibrium and its comparative static and 

welfare properties. Section 4 performs a welfare analysis (including a comparison with 

Bayesian Cournot equilibria). Section 5 characterizes the convergence to price-taking 

behavior as the market grows large. It provides also an analysis of the order of magnitude 

of deadweight losses. Concluding remarks, including potential policy implications, close 

the paper. All proofs and the analysis of the Bayesian Cournot model are gathered in the 

Appendix.  

 

2. Application to electricity markets 

A potential application of the model is to competition in the electricity spot market. In 

quite a few spot markets firms submit supply schedules in a day-ahead pool market which 

is organized as a uniform price multiunit auction. In the British Pool, the first liberalized 

wholesale market, generators had to submit a single supply schedule for the entire day. 

The schedules are increasing since the Pool’s rules rank plants in order of increasing bids. 

Other wholesale markets have different rules (the British Pool was replaced by NETA in 

                                                 
4  Talluri and Van Ryzin (2004) for the basics of revenue management. 
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2001).
5
 In our modeling the supply functions are smooth (the old English pool was 

modeled like this by Green and Newbery (1992) and Green (1996, 1999)) while typically 

supplies are discrete. However the modeling of the auction with discrete supplies leads to 

existence problems of equilibrium in pure strategies (see von der Fehr and Harbord 

(1993)). The linear supply function model has been widely used in electricity markets and 

new developments include cost asymmetries, capacity constraints, piecewise affine 

supply functions and non-negativity generation constraints (see Baldick, Grant, and Kahn 

(2004) and Rudkevich (2005)). 

 

Both strategic behavior and private information are relevant in electricity markets. There 

is ample evidence by now that firms bid over marginal costs (see, e.g. Borenstein and 

Bushnell (1999), Borenstein et al. (2002), Green and Newbery (1992), and Wolfram 

(1998)). Hortaçsu and Puller (2006) introduce private information on the contract 

positions of firms in the Texas balancing market (the day-ahead market is resolved with 

bilateral contracts).6 Information on costs is available because the balancing market takes 

place very close to the generation moment and from information sellers. Kühn and 

Machado (2004) introduce private information on retail sales in their study of vertically 

integrated firms in the Spanish pool. Private cost information related to plant availability 

will be relevant when there is a day-ahead market organized as a pool where firms submit 

hourly or daily supply schedules.7 Indeed, plant availability is random, and the firm has 

privileged information because of technical issues or transport problems; hydro 

availability in the reservoirs of each firm is private information; the terms of supply 

                                                 
5  In the day-ahead market in the Spanish pool generators submit supply functions which have to be 

nondecreasing and can include up to 25 price-quantity pairs for each production unit, as well as some 
other ancillary conditions. The demand side can bid in a similar way and the market operator 
constructs a merit order dispatch by ordering in the natural way supply and demand bids. The 
intersection of the demand and supply schedules determines the (uniform) price. Once the market 
closes the system operator solves congestion problems and market participants may adjust their 
positions in a sequence of intra-day markets, which have similar clearing procedures as in the day-
ahead market. (See Crampes and Fabra (2005).) 

6  The authors also argue that to take a linear approximation to marginal costs in the Texas electricity 
market is reasonable. 

7  Note that even if there was a market for information on costs the solution of the model with private 
information would yield the value of information. 
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contracts for energy inputs or imports are also private information. The latter include 

constraints in take-or-pay contracts for gas where the marginal cost of gas is zero until 

the constraint –typically private information to the firm– binds, or price of transmission 

rights in electricity imports depending on the private arrangements for the use of a 

congested interconnector. (It is worth noting that even if the opportunity costs of the 

inputs are the prices of those inputs in international markets in many instances there is 

not a single reference market.) Furthermore, in an emission rights system, future rights 

allocations may depend on current emissions and firms may have different private 

estimates of such allocation. This will affect the opportunity cost of using current 

emission rights. 

 

There is a lively debate about the best way of modeling competition in the wholesale 

electricity market. The Cournot framework has been used in a variety of studies.8 The 

advantage of the Cournot model is that it is a robust model in which capacity constraints 

and fringe suppliers are easily incorporated. A drawback is that the Cournot model tends 

to predict prices that are too high given realistic estimates of the demand elasticity.9 The 

supply function approach is more realistic but potentially less robust. There is either non-

existence of equilibrium in pure strategies if discrete supplies are taken into account or, 

as stated before, a plethora of equilibria in smooth models with no uncertainty. Baldick 

and Hogan (2006) justify to concentrate attention on linear supply function equilibria in a 

linear-quadratic model because other equilibria (in the range between the least 

competitive Cournot one and the most competitive) are unstable. A potential advantage 

of the supply function approach, over either the Cournot or the pure auction approaches, 

is that it implies that firms bid in a consistent way over an extended time horizon.  

 

 

 

                                                 
8  See, for example, Borenstein and Bushnell (1999) for the US; Alba et al. (1999) and Ramos et. al. 

(1998) for Spain; and Andersson and Bergman (1995) for Scandinavia. 
9  However, including vertical relations and contracts in a Cournot setting provides better estimates (see 

Bushnell, Mansur, and Saravia (2008)). 
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3. A strategic supply function model 

Consider a market for a homogenous product with n consumers, each with quasilinear 

preferences and having the net benefit function  

 

( )U x px−  with ( ) 2U x x x / 2= α −β , 

 

where α and β  are positive parameters and x the consumption level. This gives rise to 

the inverse demand ( )nP X X / n= α −β  where X is total output. In the electricity market 

example the demand intercept α  is a continuous function of time (load-duration 

characteristic) that yields the variation of demand over the time horizon considered. At 

any time there is a fixed α  and the market clears. 

 

There are n firms in the market also. We are considering thus an n-replica market and 

X / n  is the average or per capita output. We will denote the average of a variable by a 

tilde (for example, nx X / n= ). Firm i produces according to a quadratic cost function  

 

( ) 2
i i i i iC x ; x x

2
λθ = θ +  

 

where iθ  is a random parameter and λ > 0. Total surplus is therefore given by 

( ) ( )i ii
TS nU X / n C x ,= − θ∑  and per capita surplus by 

( ) ( )( )i ii
TS / n U X / n C x , / n= − θ∑ .  

 

As we will see below, this replica market can also be interpreted as a market 

parameterized by the number of consumers and where firms can enter freely paying a 

positive fixed entry cost. Then the free entry number of firms is of the order of the 

number of consumers. A large market is a market with a large number of consumers. We 

will consider in the paper the reduced-form replica market version instead of the free-

entry version.  
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We assume that iθ  is normally distributed (with mean 0θ > and variance 2

θσ ). The 

parameters iθ  and jθ , j ≠ i, are correlated with correlation coefficient [ ]0,1ρ∈ . So we 

have 2
i jcov , θ⎡ ⎤θ θ = ρσ⎣ ⎦ , for j ≠ i. Firm i receives a signal i i is = θ + ε  and signals are of the 

same precision with iε normally distributed with iE 0⎡ ⎤ε =⎣ ⎦  and [ ] 2
ivar εε = σ . Error 

terms in the signals are uncorrelated among themselves and with the iθ parameters. All 

random variables are thus normally distributed. 

 

In the electricity example the random cost shock may be linked to plant availability 

because of technical issues or transport problems. Other shocks that may be private 

information to the firm are related to the level of hydro water in the reservoirs of the firm 

and the terms of the supply contracts for energy inputs or imports. Those terms are 

typically, at least partially, private information to the firm. This is so even if the 

opportunity costs of the contracted inputs are the prices of those inputs traded in 

international markets because there is not always a single reference market. The common 

component in the shock may be related to the prices of energy in international markets to 

which the supply contracts of firms are linked. Furthermore, the constraints in take-or-

pay contracts for gas imply that the marginal cost of gas is zero until the constraint is hit. 

The point is that the level of the constraint is private information to the firm. For 

electricity imports, the price of transmission rights in electricity imports is also private 

information to the firm (for example, depending on the arrangements to use an 

interconnector subject to congestion). Finally, the internalization of costs of emission 

rights may depend on the private assessment of future rights allocations. 

 

As stated in the introduction the cost shock could be also related to some ex post 

pollution or emission damage which is assessed on the firm and for which the firm has 

some private information. Another interpretation of the shock is a random opportunity 

cost of serving the market which is related to dynamic considerations (e.g. revenue 

management on the face of products with expiration date and costly capacity changes). 
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Ex-ante, before uncertainty is realized, all firms face the same prospects. It follows that 

the average parameter ( )n
n ii 1

/ n
=

θ ≡ θ∑  is normally distributed with mean θ , 

( )( ) 2
nvar 1 n 1 / nθ⎡ ⎤θ = + − ρ σ⎣ ⎦ , and n i ncov , var⎡ ⎤ ⎡ ⎤θ θ = θ⎣ ⎦ ⎣ ⎦ .  

 

Our information structure encompasses the cases of “common value” and of “private 

values”. For 1ρ =  the θ parameters are perfectly correlated and we are in a common value 

model. When signals are perfect, 2 0εσ =  for all i, and 0 1< ρ < , we will say we are in a 

private values model. Agents receive idiosyncratic shocks, which are imperfectly 

correlated, and each agent observes his shock with no measurement error. When 0ρ = , 

the parameters are independent, and we are in an independent values model.  

 

Let ( )2 2 2/θ θ εξ ≡ σ σ + σ  , it is not difficult to see that 

 

( )i i iE s s 1⎡ ⎤θ = ξ + − ξ θ⎣ ⎦  and ( )j i j i iE s s E s s 1⎡ ⎤ ⎡ ⎤= θ = ξρ + − ξρ θ⎣ ⎦ ⎣ ⎦ . 

 

When signals are perfect, 1ξ =  and i i iE s s⎡ ⎤θ =⎣ ⎦ , and ( )j i iE s s 1⎡ ⎤θ = ρ + − ρ θ⎣ ⎦ . When 

they are not informative, 0ξ =  and i i j iE s E s⎡ ⎤⎡ ⎤θ = θ = θ⎣ ⎦ ⎣ ⎦ .  

 

Under the normality assumption conditional expectations are affine. There are other 

families of conjugate prior and likelihood that also yield affine conditional expectations 

and allow for bounded supports of the distributions. (See Vives (Ch. 2, 1999)).10 

 

Firms compete in supply functions. We will restrict attention to symmetric Linear 

Bayesian Supply Function Equilibrium (LBSFE). The characterization of an equilibrium 

with supply function competition when there is market power and private information 

                                                 
10  With normal distributions there is positive probability that prices and quantities are negative in 

equilibrium. This can be controlled by choice of the variances of the distributions and the parameters 
α , β ,  λ  and θ .  
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needs to model the capacity of a firm to influence the market price at the same time that 

the firm learns from the price.  

 

The strategy for firm i is a price contingent schedule ( )iX s , ⋅ . This is a map from the 

signal space to the space of supply functions. Given the strategies of firms ( )jX s ,⋅ , j = 1, 

…, n, for given realizations of signals market clearing implies that  

( )( )n
n jj=1

p P X s , p= ∑ . 

Let us assume that there is a unique market clearing price ( ) ( )( )1 np̂ X s , ,..., X s ,⋅ ⋅  for any 

realizations of the signals.
11

 Then profits for firm i, for any given realization of the 

signals, are given by  

( ) ( )( ) ( ) ( )( )i 1 n i iX s , ,..., X s , pX s , p C X s , pπ ⋅ ⋅ = −  

 
where ( ) ( )( )1 nˆp p X s , ,..., X s ,= ⋅ ⋅ . This defines a game in supply functions and we want 

to characterize a symmetric LBSFE. Let us posit a candidate symmetric equilibrium for 
the game with n firms:  
 

( )n i n n i nX s , p b a s c p= − + . 

 
Average output is given by n n n n nx b a s c p= − + , where ( ) ( )n i n ii i

s s n n= = θ + ε∑ ∑ . 

Substituting in the inverse demand np x= α −β and solving for p we obtain  

( ) ( )1
n n n np 1 c b a s−= + β α −β + β , 

 
where we posit that n1 c 0+ β > .  

 
Given the strategies of rivals ( )n jX s , ⋅ , j ≠ i, firm i faces a residual inverse demand 

 

( ) ( )( )n j i n n n n j ij i j i
p X s ,p x n 1 b c p a s x

n n n n n≠ ≠

β β β β β
= α − − = α − − + + −∑ ∑ . 

                                                 
11  If there is no market clearing price assume the market shuts down and if there are many then the one 

that maximizes volume is chosen. 
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It follows that  

1

i n i
n 1p I 1 c x

n n

−β −⎛ ⎞= − + β⎜ ⎟
⎝ ⎠

 

where  
 

( )
1

i n n n jj i

n 1I 1 c n 1 b a s
n n n

−

≠

− β β⎛ ⎞ ⎛ ⎞= + β α − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ .12 

 
All the information provided by the price to firm i about the signals of others is subsumed 

in the intercept of residual demand iI . The information available to firm i is therefore 

{ }is , p  or, equivalently,{ }i is , I . Firm i chooses ix  to maximize 

( )
1

2 2
i i i i i i i i n i i i i

n 1E s ,p x p E s ,p x x I 1 c x E s ,p x .
2 n n 2

−⎛ ⎞λ β − λ⎛ ⎞⎡π ⎤ = − ⎡θ ⎤ − = − + β − ⎡θ ⎤ −⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠
 

The F.O.C. is 
1

i i i i n i i
n 1I E s , I 2 1 c x x 0

n n

−
⎛ ⎞β −

− ⎡θ ⎤ − + β − λ =⎜ ⎟⎣ ⎦
⎝ ⎠

 

or, equivalently, 

( )i i i
n

p E s ,p x
n n 1 c

⎛ ⎞β
− ⎡θ ⎤ = + λ⎜ ⎟⎣ ⎦ ⎜ ⎟+ β −⎝ ⎠

. 

 

The second order sufficient condition for a maximum is 
( ) n

2 0
n n 1 c

⎛ ⎞β
+ λ >⎜ ⎟⎜ ⎟+ β −⎝ ⎠

. An 

equilibrium must fulfill also n1 c 0+ β > . The following proposition characterizes the linear 

equilibrium. 

 

                                                 
12  Note that if n1 c 0+ β >  then n n n

n 1
1 c 1 c c / n 0

n

−
+ β = + β − β >  (either if nc 0>  or nc 0< ). 
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Proposition 1. In the n-firm market with ρ < 1 and 2 2
ε θσ σ < ∞/ , there is a unique 

symmetric linear Bayesian supply function equilibrium. It is given by  

( )n i n n i nX s , p b a s c p= − + ,  

where 

( )
( )( ) ( )

( )( )( ) ( )

1

n 2 2
n

1

n
n n

2

2

n 2 2

1
a

n n 1 c1

1b
1 M n n 1 c

M
1 n 1

−

ε θ

−

θ

ε

ε θ

⎛ ⎞− ρ σ β
+ λ⎜ ⎟⎜ ⎟+ β −σ + − ρ σ ⎝ ⎠

⎛ ⎞⎛ ⎞α β⎜ ⎟+ λ⎜ ⎟⎜ ⎜ ⎟ ⎟+ β + β −⎜ ⎟⎝ ⎠⎝ ⎠

=

σ= − θ
σ + + − ρ σ

 

 
and nc  is the largest solution to the quadratic equation 

 
( )( ) ( )( ) ( )( )( )

( )

2
n n n n n

1
n

n 1 1 M c n 1 M M n 1 c

n M n 0−

+λβ − + + β + λ + λ −β −

+ β + λ β − =
 

 

where 
( ) ( )( )( )

2

n 2 2

nM
1 1 n 1

ε

ε θ

ρσ
≡

− ρ σ + + − ρ σ
. In equilibrium we have that n1 c 0+ β > , 

na 0> , and nc  decreases with nM  with nc 0>  for nM 0= . 

 
Proof: See Appendix I.  

 
 
The price np  reveals the aggregate information ns . The equilibrium is privately revealing 

(i.e. for firm i ( )is , p  or ( )i ns , s  is a sufficient statistic of the joint information in the 

market, see Allen (1981)). The incentives to collect information are preserved because for 

firm i the signal is  still helps in estimating iθ  even though np  reveals ns .  

 

Some extreme cases 

The equilibrium is in contrast with the pure common value model of Kyle (1989) where 

noise traders or noisy supply are needed in order to prevent the collapse of the market. In 

our model there is no noise and consequently in the pure common value case ( 1ρ =  
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and 2
εσ < ∞ ) the market collapses. Indeed, when 1ρ =  and 2

εσ < ∞  a fully revealing REE is 

not implementable and there is no linear equilibrium. The reason should be well 

understood: if the price reveals the common value then no firm has an incentive to put any 

weight on its signal (and the incentives to acquire information disappear as well). But if 

firms put no weight on their signals then the price can not contain any information on the 

costs parameters.  As 1ρ → , nM → ∞  and at the linear equilibrium in Proposition 1 we 

have that na 0→ , nc 1 /→ − β , nb → α β/  and the equilibrium collapses in the limit. In 

fact, the supply function of a firm converges to the demand function ( )x p= α − β/ . 

 

Another particular case is when the signals are pure noise (i.e. 2 2
ε θσ σ = ∞/ ) then there is 

always a linear equilibrium (even when 1ρ = ). The equilibrium is given by 

 
( ) ( )n nX p c p= − θ  

 
where nc  is given implicitly by the positive root of 

 

( ) n
n

c 1
n n 1 c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

β + λ =
+β −

. 

 
To see this note that if 2 2

ε θσ σ = ∞/ , then i i iE s , I⎡θ ⎤ = θ⎣ ⎦ , na 0=  and 

 

( )

1

n n
n

b c
n n 1 c

−
⎛ ⎞β

= −θ + λ = − θ⎜ ⎟⎜ ⎟+ β −⎝ ⎠
. 

 
When 1ρ <  and 2 2

ε θσ σ → ∞/  (in which case ( )nM n / 1→ ρ − ρ ) the equilibrium in 
Proposition 1 also collapses since na 0→  (but there is a linear equilibrium in the limit as 

given above –which does not coincide with the limit of the equilibrium in Proposition 1 
as 2 2

ε θσ σ → ∞/  ).  
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With private values (i.e. perfect signals with 2 0εσ = ) the price reveals nθ  and firm i 

already knows its cost iθ . In this case nM 0= and the equilibrium is independent of .ρ  

 

Comparative statics 

The slope of supply nc  may be negative if costs shocks are correlated ( 0ρ > ) and signals 

not perfect ( 2 0εσ > ). The price serves a dual role as index of scarcity and as conveyor of 

information. Indeed, a high price has a direct effect to increase the competitive supply of 

a firm, but also conveys news that costs are high. If ρ = 0 or 2 2/ 0ε θσ σ =  then the price 

conveys no extra information on the costs of firm i and nc > 0. As we have seen, this is 

the case also when there is no private information (i.e. signals are pure noise, 
2 2
ε θσ σ = ∞/ ). 

 

As ρ  or 2 2/ε θσ σ  increase then the slope of the supply function becomes steeper ( nc  

decreases) because of the informational component of the price (i.e. the firm learns more 

from the price about its cost shock and reacts less to a price change than if the price was 

only an index of scarcity) and turns negative at some point. Indeed, it is easily checked 

that nc  decreases in ρ  and 2 2/ε θσ σ . This follows from the fact that the largest root of the 

quadratic equation determining nc  decreases with nM  and nM  is in turn increasing in ρ  

and 2 2/ε θσ σ . Note that as 2
εσ  increases the private signal of a firm diminishes its precision 

in a one-to-one fashion while the precision in the price diminishes according to the 

factor ( )1/ n 1− . As ρ tends to 1, nc  becomes negative. There are particular parameter 

combinations (i.e. when ( ) 11 1
nM n

−− −= + λβ  ) for which the scarcity and informational 

effects balance and firms set a zero weight ( nc 0= ) on public information. In this case 

firms do not condition on the price and the model reduces to the Cournot model where 

firms compete in quantities. However, in this particular case, when supply functions are 

allowed, not reacting to the price (public information) is optimal.  
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The comparative statics results are reminiscent of asymmetric information models where 

traders submit steeper schedules to protect themselves against adverse selection (Kyle 

(1989), Biais, Martimort, Rochet (2000)). Kyle (1989) and Wang and Zender (2002) 

consider a common value model with noise. Biais et al. (2000) in a common value 

environment show that adverse selection reduces the aggressiveness of competition in 

supply schedules of risk neutral uninformed market makers facing a risk averse informed 

trader who is subject also to an endowment shock. The phenomenon is akin to the 

winner’s curse in common value auctions (Milgrom and Weber (1982)): a bidder refrains 

from bidding aggressively because winning conveys the news that the signal the bidder 

has received was too optimistic (the highest signal in the pool). In our model a firm 

refrains from competing aggressively with its supply function because a high price 

conveys the bad new that costs are high. It is worth emphasizing that in the auction 

models of Kyle (1989) or Wang and Zender (2002) the demand schedules always have 

the “right” slope: downwards. Furthermore, in the double auction context of Kyle (1989) 

a linear equilibrium exists only if the number of informed traders is larger or equal than 3 

(when there are no uninformed traders). This is so since the market breaks down when 

traders submit vertical schedules. In our model with strategic agents facing a demand 

function from passive consumers this does not happen.  

 

Applications 

In the pollution damage interpretation of the shock, and when the equilibrium calls for a 

downward sloping supply, we would have that when firms see the price going up they 

reduce supply because they figure out that the assessed pollution damage will be higher.  

 

Patterns of pricing for airline flights have proved difficult to explain with extant 

theoretical models (see e.g. McAfee and te Velde (2006)). If we believe that supply 

function competition provides a suitable reduced form for pricing in such markets then 

taking into account the information aggregation role of price may help explaining some 

pricing patterns.13 We have seen that when the information role of the price dominates is 

                                                 
13  See Section 10.1 in Talluri and Van Ryzin (2004) for a description of airline pricing. For example, the 

authors state (p. 523): “A typical booking process proceeds as follows. An airline posts availability in 
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index of scarcity role then supply is downward sloping. If this is the case the 

interpretation would be that when airlines see prices going up they may infer, correctly, 

that the opportunity cost is high (i.e. that expected next period demand is high) and they 

reduce supply in the present period to be able to supply next period at a higher profit. In 

any case, when the variance of the (opportunity) cost shock increases the equilibrium 

reaction of firms is to set a flatter supply schedule inducing lower margins. Higher 

volatility of demand would translate then in lower margins.  

 

Increasing the noise in the private signal 2
εσ  makes the slope of supply steeper (decreases 

nc ). This result may help explain the fact that in the Texas balancing market small firms 

use steeper supply functions than those predicted by theory (Hortaçsu and Puller (2006)). 

Indeed, smaller firms may have signals of worse quality because of economies of scale in 

information gathering while private cost information has not been taken into account in 

the estimation.  

 

Competitiveness 

From the F.O.C. we have that  

 

( ) ( )i i i i1
n

1p E s ,p x x
n n 1 c−

⎛ ⎞
− ⎡θ ⎤ + λ = ⎜ ⎟⎣ ⎦ ⎜ ⎟β + −⎝ ⎠

, 

 

where the slope of residual demand is ( )1
nn n 1 c−β + − . We see therefore that the 

competitiveness of the LBSFE depends on the slope of supply nc . A consequence of the 

comparative statics results is that the margin over expected marginal cost 

i i iE s , p x⎡θ ⎤ + λ⎣ ⎦  is increasing in 2
εσ  and  ρ . Using simulations it can be checked that the 

aggregate slope of supply of rivals of a firm ( ) nn 1 c−  increases (i.e. becomes flatter) 

                                                                                                                                                 
each fare class to the reservation systems stating the availability of seats in each fare class.” This is not 
unlike a supply function.  
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with n whenever nc  > 0 for any n and that ( )1
nn n 1 c−β + −  is increasing in n always. It 

follows that the margin is decreasing in n. 14 

 

A similar relation holds for the margin over average expected marginal cost  

[ ] ( )n n
n n i i i i i ni 1 i 1

1 1E MC E s ,p x E s ,p x
n n= =

≡ ⎡θ ⎤ + λ = ⎡θ ⎤ + λ⎣ ⎦ ⎣ ⎦∑ ∑ : 

 
[ ]

( )( )
n n

n n

p E MC 1
p n n 1 c

−
=

+ β − η
 

 
where ( )n np / xη = β is the elasticity of demand.  

 

A Bayesian Cournot equilibrium, where firm i sets a quantity contingent only on its 

information { }is , corresponds to nc 0=  with a margin n1/ nη  (the unique Bayesian 

Cournot equilibrium is derived formally in Proposition A.1 in Appendix II). The supply 

function and the Cournot equilibrium coincide when ( ) 11 1
nM n

−− −= + λβ , in which case 

nc 0=  (indeed, then it can be checked that Cournot SF
n na a=  and Cournot SF

n nb b= ). 

 

When nc 0>  we are in the usual case in which the supply function equilibrium has 

positive slope and is between the Cournot and the competitive outcomes (e. g. Klemperer 

and Meyer (1989) when uncertainty has unbounded support). However, when nc 0<  the 

margin is larger than the Cournot level and, in fact, converges to the collusive level n1/ η  

when 1ρ →  (this is so since ( )( )nn n 1 c 1+ β − →  as 1ρ → ). It is remarkable that firms 

                                                 
14  Another possible pattern is for ( ) nn 1 c−  to have a hump-shaped form with n being positive and 

increasing first to become decreasing and eventually negative. ( nc  may increase or decrease with n.) 

Simulations have been performed for the range of parameters 2

ε
σ  and 2

θ
σ  in { }0.1,1,10 and β  and 

{ }1,10λ ∈ , setting α  and θ  so as to control the probability that negative prices and/or quantities 

occur  (say, letting, 10α =  and 5θ =  or  30α =  and 15θ = ). 
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may approach collusive margins in a one-shot noncooperative equilibrium because of 

informational reasons. 

 

In some cases the rules of the market force supply functions to be nondecreasing. If this 

is the case and if the equilibrium unrestricted supply were to be downward sloping then 

the restricted equilibrium would be of the Cournot type with firms submitting vertical 

schedules. This implies that the market power of firms is capped at the Cournot level.  

 
The following proposition summarizes results so far. 
 
Proposition 2. At the LBSFE, with ρ < 1 and 2 2

ε θσ σ < ∞/ , the slope of equilibrium supply 
is steeper ( nc  smaller) with increases in ρ  and 2 2

ε θσ σ/ , going from nc 0>  for ρ = 0 or 
2 0εσ =  to nc 0<  for large values of ρ  or 2 2

ε θσ σ/ .  As 1ρ →  the margin over average 

expected marginal cost tends to the collusive level. 
 
 

Free entry  

The replica market considered can be the outcome of free entry in a market parameterized 

by size. Consider a market with m consumers (the size of the market) and inverse demand 

( )m mP X X= α −β  where m / mβ = β . Suppose now that at a first stage firms decide 

whether to enter the market or not. If a firm decides to enter it pays a fixed cost F > 0. At 

a second stage each active firm i, upon observing its signal is , sets an output level. Given 

that n firms have entered, a Bayesian Supply Function equilibrium is realized. Given our 

assumptions, for any n there is a unique, and symmetric, linear equilibrium yielding 

expected profits [ ] ( )( ) ( )( )2
n n iE n 2 / 2n E X s ,p⎡ ⎤π = λ + β ⎢ ⎥⎣ ⎦

 for each firm. A free entry 

equilibrium is a subgame-perfect equilibrium of the two-stage game. A subgame-perfect 

equilibrium requires that for any entry decisions at the first stage, a Bayesian-Nash 

equilibrium in supply functions obtains at the second stage. Given a market of size m, the 

free entry number of firms ( )*n m  is approximated by the solution to [ ]nE Fπ =  

(provided F is not so large to prevent any entry). It can be checked that ( )*n m  is of the 
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same order as m (similarly as in Vives (2002)). This means that the ratio of consumers to 

firms is bounded away from zero and infinity for any market size. We can reinterpret, 

therefore, the replica market as a free entry market parameterized by market size. 

 
 
 
 
4. Welfare analysis 

In order to assess the welfare loss due to strategic behavior we characterize price-taking 

equilibria. We complement the analysis comparing with the performance of Bayesian 

Cournot equilibria. 

 

4.1 Price-taking equilibria and deadweight losses 

Full (shared) information competitive equilibria are Pareto optimal and characterized by 

the equality of price and expected marginal cost (with full information): 

 

i i n ip E s ,s x= ⎡θ ⎤ + λ⎣ ⎦ ,  i = 1, .., n. 

 
The implied allocation is symmetric (since the total surplus optimization problem is 

strictly concave and firms and information structure are symmetric) and, provided that 

1ρ < , 2 0θσ > and 2
εσ < ∞ , it is implemented by a symmetric price-taking LBSFE (denoted 

by a superscript “c” –for competitive– on the coefficients). The equilibrium strategy will 

be of the form ( )c c c c
n i n n i nX s , p b a s c p= − +  and it will arise out of the maximization of 

expected profits of firm i taking prices as given but using the information contained in the 

price. That is, firm i chooses ix  to maximize 

( ) 2
i i i i i iE s , p x p E s ,p x

2
λ

⎡π ⎤ = − ⎡θ ⎤ −⎣ ⎦ ⎣ ⎦ . 

This will yield the following system of F.O.C. 
 

i i ip E s ,p x= ⎡θ ⎤ + λ⎣ ⎦  for i = 1, .., n, 
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where ( ) ( )1c c c
n n n np 1 c b a s

−
= + β α −β + β  provided that c

n1 c 0+ β ≠ . In the linear 

equilibrium we obtain c
n1 c 0+ β ≠  > 0 and c

na 0> . Therefore, p reveals ns , 

i i i i nE s ,p E s ,s⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦  , and the price-taking LBSFE implements the efficient solution.  

 
Indeed, similarly as in the proof of Proposition 1 it can be checked that the coefficients of 

the equilibrium strategy ( )c c c c
n i n n i nX s , p b a s c p= − + are given by the solution to the system 

of equations 

( )
( )( )

( )( )( )
( )

( )

2

n2 2

2
n n

n2 2

n n
n

1
a

1

M b
b

1 n 1

M 1 c
1 c

θ

ε θ

ε

ε θ

⎧ − ρ σ
= λ⎪

σ + − ρ σ⎪
⎪

β − ασ⎪− θ − λ = λ⎨ βσ + + − ρ σ⎪
⎪

+ β⎛ ⎞⎪ − λ = λ⎜ ⎟⎪ β⎝ ⎠⎩

 

where nM  is as in Section 3.  

 
The following proposition is immediate. 
 
Proposition 3. In the n-firm market with ρ < 1 and 2 2

ε θσ σ < ∞/ , there is a unique 

symmetric price-taking LBSFE. It is given by  ( )c c c c
n i n n i nX s , p b a s c p= − +  with 

( )
( )( ) ( )( )( )

( ) ( )( )( )

2
c c 1
n n2 2

n

21 1
c n
n n 2 2

n

2

n 2 2

1 1a ,b ,  
1 M1

nMand c ,and M .
M 1 1 1 n 1

M
1 n 1

θ −

ε θ

− −
ε

ε θ

ε

ε θ

⎛ ⎞
− ρ σ α⎜ ⎟= = ⎜ ⎟+ βλ σ + − ρ σ ⎜ ⎟

⎝ ⎠
ρσλ − β

= ≡
+ − ρ σ + + − ρ σ

σ− λ θ
σ + + − ρ σ

 

This equilibrium implements the efficient allocation. 
 
 

Note that c
n1 c+ β > 0 and c

na 0>  and that we may have also c
nc  < 0.  As before the 

equilibrium supply function can be upward or downward sloping. It will be downward 

sloping when the reaction to private information is small (i.e. when we are close to the 

common value case, when prior uncertainty is low or noise in the signals is high).  
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We have that c
nc  strictly decreases with n provided ρ > 0 (the result follows since c

nc  is 

strictly decreasing in nM and nM can be shown to be strictly increasing in n if ρ > 0). The 

reason that the supply function at a price-taking LBSFE is steeper as n grows is that with 

larger n the price has better information about costs (and this matters if ρ > 0).  When ρ = 

0 we have that nM  = 0, c
nc 1/= λ , and c c

n nb a= − θ  (in this case, obviously, 

( )1
i i ix p E s−= λ − ⎡θ ⎤⎣ ⎦ ).  

 

For ρ < 1, and 2 2
ε θσ σ < ∞/ , the supply function of a firm in the price-taking equilibrium 

is always flatter than the supply function of the firm in the strategic equilibrium: 

 

( ) ( )
1

c 1
n n n

n

c c / M 1 0
n n 1 c

−

−
⎛ ⎞⎛ ⎞β⎜ ⎟− = λ − + λ + >⎜ ⎟⎜ ⎟+ β −⎜ ⎟⎝ ⎠⎝ ⎠

 

since in equilibrium ( ) nn n 1 c 0+ β − >  . Similarly, we obtain that c
n nb b 0− > provided 

that 2 0εσ > . It is immediate also that firms are more cautious responding to their private 

signals when they have market power: 
  

( )
( )( ) ( )

12
c 1
n n 2 2

n

1
a a 0

n n 1 c1

−

θ −

ε θ

⎛ ⎞⎛ ⎞− ρ σ β⎜ ⎟− = λ − + λ >⎜ ⎟⎜ ⎟+ β −⎜ ⎟σ + − ρ σ ⎝ ⎠⎝ ⎠
. 

 
This is because of the usual effect of market power: A firm takes into account the price 

impact coming from his production. Note that in principle a firm with market power 

would also be cautious because of the informational leakage from his action, but here the 

equilibrium is revealing. The simulations also uncover that price volatility is always 

larger in the competitive case. 

 

The (expected) deadweight loss at the LBSFE is the difference between (per capita) 

expected total surplus at the LBSFE ( nETS ) and at the price-taking LBSFE ( c
nETS ), 

( )c
n nETS ETS / n− . It can be shown (see Appendix I) that 
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( ) ( ) ( )( )2 2c c c
n n n n in inETS ETS n E x x E x x 2⎡ ⎤ ⎡ ⎤β − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  -  /  = / .
 

The deadweight loss is due to market power. Simulations show that a typical case is for 

the deadweight loss to be an increasing function of ρ  and of 2
εσ  (with nETS  decreasing 

and c
nETS  U-shaped in ρ , and with both nETS  and c

nETS  decreasing in 2
εσ ).15 This is 

true both for the part of the deadweight loss corresponding to allocative inefficiency as 

well as the one corresponding to productive inefficiency (see the decomposition in 

Appendix I). This is consistent with the result that as 1ρ →  and we approach the 

common value case margins tend to the collusive level. It also found that the deadweight 

loss decreases as the market gets large (i.e. with n). (See Figure 1a, b).  

 

However, other patterns are possible and the deadweight loss may be decreasing in ρ . 

This happens, for example, when 4, 0.5β = λ = , 20θ = , 45α = , and 2 20.2, 10ε θσ = σ = . In 

this case c
nETS  falls with ρ  more quickly than nETS . 

 

As we increase ρ  the distance between the LBSFE and its price-taking counterpart may 

increase or decrease. There are several effects to consider. First, increasing ρ  decreases 

nc  (i.e. makes the LBSFE less competitive) and this tends to increase both c
n na a−  and 

c
n nc c−  for given value of ρ . Second, the very increase of ρ , for a given nc , reduces 

c
n na a−  and c

n nc c−  (the latter since nM  is monotone increasing in ρ ). The second effect 

is due to the fact that increases in ρ  make reliance on private information less important. 

Finally, there is another effect on expected total surplus via the variability of the average 

cost parameter nvar ⎡ ⎤θ⎣ ⎦  . This third effect has nothing to do with information and is 

highlighted in the private values case 2( 0)εσ =  where both competitive and strategic 

                                                 
15  The parameters considered systematically for the simulation are 10α =  and 5θ =  or  30α =  and 

15θ = , and { }, 1,10β λ ∈ , and { }2 2, 0.1,1,10
θ ε

σ σ ∈ . 
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equilibria are independent of ρ . In this case increasing ρ  decreases the deadweight loss 

since c
nETS  falls faster with ρ  than nETS  by effect of the induced increase in nvar ⎡ ⎤θ⎣ ⎦ .16 
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Figure 1a. Deadweight loss as a function of ρ   (with parameters 1β = λ = , 5θ = , 10α = , 
and 2 2 1ε θσ = σ = ). 

 
 

                                                 
16  The likely reason is that increasing ρ  increases [ ]nvar θ  and this increases the variance of average 

output, which in turn decreases expected total surplus (expected consumer surplus increases, and 
expected profits decrease, with higher average output variability since then consumers get lower prices 
when they consume more; the profit decrease dominates the consumer surplus increase). The 
differential effect on the competitive surplus is due to the fact that the competitive output is more 
sensitive to costs and therefore the impact on output variability of the increase in ρ  larger. 
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Figure 1b. Deadweight loss as a function of 2
εσ  (with parameters n = 5, 

1β = λ = , 5θ = , 10α = , and 2 1θσ = ). 
 

 
4.2 Comparison with Cournot 

The welfare evaluation of the LBSFE is in marked contrast with the Bayesian Cournot 

equilibrium. In contrast to the Cournot case, at the LBSFE there is only a deadweight loss 

due to market power but not due to private information. There is always a welfare loss at 

the price-taking Bayesian Cournot equilibrium because the Cournot market mechanism 

does not aggregate information. However, a price-taking Bayesian Cournot equilibrium is 

team optimal (i.e. maximizes total expected surplus subject to the constraint that firms 

use decentralized -quantity- strategies in information, see Vives (1988)). 

 

It is worth to compare the relative efficiency of the Cournot market ( Cournot
nETS ) in 

relation to the supply function market ( SF
nETS ) in per capita terms. A typical pattern for 

moderate n is for ( )SF Cournot
n nETS ETS / n−  to be positive for ρ  close to zero and negative 

for ρ close to 1, being zero at the point for which the supply function equilibrium calls 

for a vertical supply. For larger n we may have ( )SF Cournot
n nETS ETS / n 0− >  all along. (See 
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Figure 2.) In fact, for a given ρ  and for large n we have always that 

( )SF Cournot
n nETS ETS / n 0− > . (See Figure 3.) Furthermore, when signals are perfect 

( 2 0εσ = ) we have also that ( )SF Cournot
n nETS ETS / n 0− >  always. When signals are close to 

perfect we have that ( )SF Cournot
n nETS ETS / n 0− >  except for ρ  very close to 1. 
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Figure 2. Efficiency differential between supply function and Cournot equilibria as a 
function of ρ  (with parameters 1β = λ = , 5θ = , 10α = , and 2 2 1ε θσ = σ = ). 
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Figure 3. Efficiency differential between supply function and Cournot equilibria as a 
function of n (with parameters 1β = λ = , 5θ = , 10α = , and 2 2 1ε θσ = σ = ). 
 

The intuition for the results should be clear. The supply function market always 

dominates in efficiency in terms of information because firms have full information while 

in the Cournot market they do not. For 2 0εσ =  or ρ  small the supply function market 

dominates overall because on top firms have less market power (since supply functions 

slope upwards). The result is that SF Cournot
n nETS ETS 0− >  for 2 0εσ =  or ρ  small. For 

larger ρ  and 2 0εσ > , when supply functions slope downwards, firms in the supply 

function market have more market power and this may dominate the information effect 

for n low, with the result that SF Cournot
n nETS ETS 0− < . At the critical value of ρ  for which 

the supply function equilibrium calls for a vertical supply we have SF Cournot
n nETS ETS 0− =  

since then both equilibria coincide. For n larger the market power effect is not very 

important and the information effect dominates and we have that 

( )SF Cournot
n nETS ETS / n 0− >  always.  

 

For n large, for a fixed ρ , we must have ( )SF Cournot
n nETS ETS / n 0− >  since as n grows the 

supply function equilibrium converges to the (full information) first best but not the 
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Cournot equilibrium. At the LBSFE there is only a deadweight loss due to market power, 

which dissipates in a large market; at the Bayesian Cournot equilibrium the deadweight 

loss due to private information remains in a large market (see Section 5 for the formal 

results). 

 

The comparison between the Cournot and supply function outcomes has practical 

implications. First when a supply function market is modeled, for convenience, à la 

Cournot we want to know what biases are introduced. Second, when firms are restricted 

to use upward sloping schedules they may end up using vertical ones when in the supply 

function equilibrium they would be called to use downward sloping ones. The restriction 

to upward sloping schedules caps the market power of firms in the supply function 

market.  

 

With respect to the first issue, recall that at the LBSFE there is only a deadweight loss 

due to market power but not due to private information. The result is that in a market 

characterized by supply function competition using the Cournot model overestimates the 

welfare loss with respect to the actual supply function mechanism on two counts when 

supply function slope upwards: excessive market power and lack of information 

aggregation. When the equilibrium supply function slopes downwards the Cournot 

market underestimates market power and then the comparison is ambiguous: the Cournot 

market may under- or overestimate the deadweight loss in relation to supply function 

competition. In a large market, as we will see in the next section, the Cournot model 

always overestimates the welfare loss since at the LBSFE there is (almost) no efficiency 

loss while there is a significant one with Cournot competition due to private information. 

 

With respect to the second issue, forcing firms to use increasing schedules when they 

would like to use decreasing ones may or not may be a good idea depending basically on 

the number of firms. It will be good when the number of firms (and size of the market) is 

moderate.  
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5. Convergence properties 

We show next how equilibria in finite economies become price-taking. We characterize 

the rates of convergence and the order of magnitude of the deadweight loss at the LBSFE. 

 

Before stating the convergence results we will recall some measures of speed of 

convergence. We say that the sequence (of real numbers) nb  is of the order nυ, with υ a 

real number, whenever n nn b k−υ ⎯⎯→ for some nonzero constant k. We say that the 

sequence of random variables { }ny  converges in mean square to zero at the rate 

r1/ n (or that ny  is of the order r1/ n ) if ( )2
nE y⎡ ⎤

⎣ ⎦ converges to zero at the rate r1/ n  

(i.e. ( )2
nE y⎡ ⎤

⎣ ⎦  is of the order r1/ n ). Given that ( ) [ ]( ) [ ]22
n n nE y E y var y⎡ ⎤ = +⎣ ⎦ , a 

sequence { }ny  such that [ ]nE y = 0 and [ ]nvar y  is of the order of 1/ n , converges to zero 

at the rate 1/ n .  

 
If the random parameters ( )1 n,...,θ θ  are i.i.d. with finite variance and mean θ , and we 

let ( )n
n ii 1

/ n
=

θ ≡ θ∑ , then nθ − θ  converges (in mean square) to 0 at the rate of 1/ n  

because nE 0⎡ ⎤θ − θ =⎣ ⎦  and 2
nvar / nθ⎡ ⎤θ = σ⎣ ⎦ . In our case nθ  is normally distributed with 

mean θ  and ( )( ) 2
nvar 1 n 1 / nθ⎡ ⎤θ = + − ρ σ⎣ ⎦ . We have therefore that nθ → θ  in mean 

square at the rate 1/ n  where θ  is normally distributed with mean θ  and variance 2
θρσ .  

 

The following proposition characterizes the convergence of the LBSFE to a price-taking 

equilibrium as the market grows. As we have seen before the price-taking equilibrium is 

first best efficient since it aggregates information. 

 

Proposition 4. As the market grows large the market price np  (at the LBSFE) converges 

in mean square to the price-taking Bayesian price c
np  at the rate of 1/ n . (That is, 
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( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 tends to 0 at the rate of 21/ n .) The deadweight loss at the LBSFE 

( )c
n nETS ETS / n−  is of the order of 21/ n . 

 

The results follow because c
n na a− , c

n nb b− , and c
n nc c−  are at most of the order of 1/ n  

and both np  and c
np  depend on the average signal ns . (See Appendix I.)  

 

The rate of convergence to price taking behavior is 1/n, which is the same as the usual 

rate under complete information. The departure from price taking (marginal cost) is of the 

order of 1/n and the deadweight loss is of the order of the square of it. This result should 

not be surprising since the LBSFE aggregates information. Cripps and Swinkels (2006) 

obtain a parallel result in a double auction environment. The authors consider a 

generalized private value setting where bidders can be asymmetric and can demand or 

supply multiple units. Under some regularity conditions (and a weak requirement of “a 

little independence” where each player’s valuation has a small idiosyncratic component), 

they find that as the number of players n grows (say that there are n buyers and n sellers) 

all nontrivial equilibria of the double auction converge to the competitive outcome and 

inefficiency vanishes at the rate of 21/ n −α  for any 0α > .  

 

It follows from the simulations also that typically the speed of convergence of the 

deadweight loss to zero (in terms of the constant of convergence) is slower when ρ  is 

larger. That is, the limit as n tends to infinity of ( )c
n nn ETS ETS− is increasing with ρ . 

(This is so since we have seen that ( )c
n nETS ETS−  is typically increasing in ρ  for any n 

and the limit of ( )c
n nn ETS ETS− is well defined .) 

 

At the Bayesian Cournot equilibrium Proposition 4 holds (with the important proviso that 

now ( )c
n nETS ETS / n−  is the deadweight loss with respect to the price-taking 

equilibrium but not with respect to the full information first best). The price-taking 

Bayesian Cournot equilibrium coincides with full information first best in a large 
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economy only in the independent values case, where there is no aggregate uncertainty 

(see Vives (2002)). Otherwise, as the market grows large there is no convergence to a full 

information equilibrium.  

 

In summary, convergence to price-taking is, in both cases, at the rate of 1/ n  for prices 

and 21/ n  for the welfare loss with respect to price-taking behavior. 

 

6. Concluding remarks 

In this paper we have examined supply function competition with private information and 

compared it with the Cournot model. While in some markets the supply function model is 

closer to the institutional set up it is often the case that the Cournot model is used instead. 

The reason is that the Cournot model is easier to handle and quite robust. The question 

arises then on the nature of the biases introduced by the Cournot model in this situation. 

In our linear-normal model we have found that there is a unique symmetric linear 

Bayesian supply function equilibrium. The equilibrium is privately revealing with the 

private signal of the firm and the price being sufficient statistics of the join information in 

the market for the firm. This means that the incentives to acquire information are 

preserved.  

 

Supply functions may slope downwards when the information role of the price 

overwhelms its traditional index of scarcity role. This may help explain odd pricing 

patterns. Furthermore, we find that an increase in the correlation of cost parameters or in 

the noise in private signals makes supply functions steeper when upward sloping and 

increases price-cost margins always. This implies that ignoring private cost information 

with supply function competition may explain supply slopes that look “too high”. For 

example, in the Texas balancing market small firms may use steeper supply functions 

than those predicted by theory (Hortaçsu and Puller (2006)) since small firms have 

signals of worse quality because of economies of scale in information gathering.  

 

The result may have regulatory and competition policy implications since the observation 

of high margins may be taken as an indication of excessive market power or collusion 
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(coordinated behavior) when in fact it may be explained by poor information of the part 

of firms. Indeed, close to the common value situation margins will approach the collusive 

level and the deadweight loss will increase. However, from the competition policy 

perspective it is useless in this market to go after coordinated behavior since firms are 

just adjusting noncooperatively to private information. It may be useful instead to cap the 

market power of firms (e.g. requiring them to use upward sloping schedules). This will 

improve welfare in markets of moderate size and number of firms.  

 

The welfare analysis provides a stark contrast between Cournot and supply function 

equilibria. Indeed, the Cournot model overestimates the welfare loss with respect to an 

actual supply function mechanism on two counts when supply functions are upward 

sloping: excessive market power and lack of information aggregation. The Cournot 

model displays too high margins and an increased welfare loss since firms only rely on 

their private information. When supply functions slope downwards then Cournot 

underestimates the market power of firms and the comparison is ambiguous: the Cournot 

market may under- or overestimate the deadweight loss in relation to supply function 

competition. In both the supply function and Cournot models the order of magnitude of 

the distortion because of strategic behavior is 1/n in prices and 21/ n  in the deadweight 

loss where n is the number of firms (and size of the market). This result provides a 

measure of the competitiveness of the market. The difference is that in a large market at 

the supply function equilibrium there is no efficiency loss while there is with Cournot 

competition due to private information. 

 

Several extensions may be worth pursuing. Among them, the consideration of 

asymmetric firms (and merger analysis), the introduction of forward contracts, and costly 

information acquisition. 
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Appendix I: Proofs of Propositions 1, 2, 3 and 4. 
 
Proof of Proposition 1: Consider a candidate linear equilibrium 

( )n i n n i nX s , p b a s c p= − + . Positing n1 c 0+ β > , the price equation 

( ) ( )1
n n n np 1 c b a s−= + β α −β + β  

provided that na > 0 can be rearranged to define 

( )n n
i i jj i

n

p 1 c b
h n s s

a ≠

+ β − α + β
≡ − =

β ∑ . 

The pair ( )is ,p  is informationally equivalent to the pair ( )i is ,h , hence 

i i i i iE s , p E s ,h⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ . 

Because of the assumed information structure we have 
 

( )

( )
( )

( ) ( )

2 2 2

2 2 2 2

2 2

i

i

i

n 1
, n 1

n 1 n 1 n 1
s ~ N
h

θ θ θ

θ θ ε θ

θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞θ σ σ − ρσ
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

θ σ σ + σ − ρσ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− θ − ρσ − ρσ ψ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

θ
 , 

 
where ( ) ( ) ( )( )2 2 2n 1 n 1 n 2εθ θψ = − σ + σ + − − ρσ . We obtain 

( )( )
( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

2
i

i i i i i 2 2

2 2 2 2 2

i i2 2 2 2 2 2 2 2

hE s ,h E s ,
n 1 1 n 1

1 1 n 1
s h .

1 1 n 1 1 1 n 1

ε

θ ε

θ θ ε θ ε

θ ε θ ε θ ε θ ε

σ⎡ ⎤
⎡θ ⎤ = θ = θ +⎢ ⎥⎣ ⎦ − σ + − ρ + σ⎣ ⎦

σ σ − ρ + − ρ + σ σ σ ρ
+

σ − ρ + σ σ + − ρ + σ σ − ρ + σ σ + − ρ + σ

 
 
We are looking for strategies of the form ( )n i n n i nX s , p b a s c p= − + . Using the F.O.C. 

( )i i i
n

p E s ,p x
n n 1 c

⎛ ⎞β
− ⎡θ ⎤ = + λ⎜ ⎟⎣ ⎦ ⎜ ⎟+ β −⎝ ⎠

 and the expression for ih  we obtain the 

following  
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( )( ) ( )( )
( )( ) ( )( )( )

( ) ( )( )( )
( )( ) ( )( )( )

( )( )
( )( ) ( )( )( ) ( ) ( )

2 2 22 2 2 2 2
n n

i2 2 2 2 2 2 2 2

2 2
n n

n n i n2 2 2 2
n

1 1 n 11 n b a
s

1 1 n 1 1 1 n 1

n 1 c a
1 p b a s c p

n n 1 c1 1 n 1

θ ε θε ε θ θ ε

ε θ ε θ ε θ ε θ

θ ε

ε θ ε θ

− ρ σ σ + + − ρ σσ σ + − ρ σ θ + σ σ ρ β − α β
− −

σ + − ρ σ σ + + − ρ σ σ + − ρ σ σ + + − ρ σ

⎛ ⎞σ σ ρ + β β ⎛ ⎞β⎜ ⎟+ − = + λ − +⎜ ⎟⎜ ⎟⎜ ⎟ + β −σ + − ρ σ σ + + − ρ σ ⎝ ⎠⎝ ⎠

 

Identifying coefficients, letting
( ) ( )( )( )

2

n 2 2

nM
1 1 n 1

ε

ε θ

ρσ
≡

− ρ σ + + − ρ σ
, we obtain 

n n na ,b ,c by solving the following system of equations 

 

( )
( )( ) ( )

( )( )( ) ( )
( )

( )
( ) ( )

2

n2 2
n

12
n n

n2 2
n

n n
n

n n

1
a

n n 1 c1

M b
b

n n 1 c1 n 1

M 1 c
1 c

n n 1 c n n 1 c

θ

ε θ

−

ε

ε θ

⎧ ⎛ ⎞− ρ σ β
⎪ = + λ⎜ ⎟⎜ ⎟+ β −σ + − ρ σ⎪ ⎝ ⎠
⎪
⎪ ⎛ ⎞ β − ασ β⎪− θ + λ − =⎜ ⎟⎨ ⎜ ⎟+ β − βσ + + − ρ σ ⎝ ⎠⎪
⎪

⎛ ⎞⎛ ⎞ ⎛ ⎞+ β β β⎪
− + λ = + λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟β + β − + β −⎝ ⎠ ⎝ ⎠⎝ ⎠⎪⎩

 

 
This characterizes linear equilibria. The last equation is quadratic in c of the form 

( )g c = 0 with 

( ) ( )( ) ( )( ) ( )( )( ) ( )2 n
n n n

Mg c n 1 1 M c n 1 M n 1 M c n n .⎛ ⎞
= λβ − + + β + λ + + − λ − β + β + λ −⎜ ⎟β⎝ ⎠

 

For n 1 0− >  can write it as ( ) 2f c c c 0= + Σ + Λ =  where 

 ( ) ( )
( )( )

n

n

n n 1 M
n 1 1 M

β + λ + λ − + β
Σ = βΛ +

βλ − +
 and ( )

( ) ( )
n

2
n

n M n
n 1 1 M
β + λ − β

Λ =
− λβ +

. (For n = 1 there is a 

unique solution to the quadratic equation.) The function ( )f ⋅  is convex. Let 2 4∆ ≡ Σ − Λ . 

It can be checked that 0∆ >  and therefore the equation has two real roots and only the 
largest root nc  is compatible with the second order condition.  

 

It is easily checked also that n1 c 0+ β >  since 
( )( )2

n

1 2f 0
n 1 1 M

⎛ ⎞ − β − λ
− = <⎜ ⎟β λβ − +⎝ ⎠

 and 

therefore for the largest root we have nc 1/> − β  because of convexity of ( )f ⋅ . 
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Furthermore, na 0> . This is so since from the expression for na  in the system of 

equations, ( ) ( )n
n

sgn a sgn
n n 1 c

⎛ ⎞β
= + λ⎜ ⎟⎜ ⎟+ β −⎝ ⎠

. Since nc 1β > −  it follows that 

( ) ( )nn n 1 c n n 1 1 0+ β − > − − = > . It is immediate also that the largest root decreases 
with nM  since nf / M 0∂ ∂ > . Finally, it is immediate to check from the solution to the 
quadratic equation that when nM 0=  we have that nc 0> ♦ 

 
Claim: c

nc is strictly decreasing in n if ρ > 0 

Proof: We know that 
( )

c n
n

n

Mc
M 1

β − λ
=

λβ +
. It is immediate that c

nc  is strictly decreasing 

in nM and, for ρ > 0 , we have that 

( )
( )( )
( )( )( )

2 22
n

22 2

1M 0
n 1 1 n 1

ε θε

ε θ

⎛ ⎞σ + − ρ σρσ∂ ⎜ ⎟= >
⎜ ⎟∂ − ρ σ + + − ρ σ⎝ ⎠

.♦ 

 
In order to perform welfare comparisons we will need the following Lemma. 

 

Lemma. Comparison of regimes with symmetric strategies and information structure. The 

difference in (per capita) ETS between a price-taking regime R and another regime with 

strategies based on less information (that is, on a weakly coarser information partition) is 

given by  

( ) ( ) ( )( )2 2R R R
n n in inETS ETS n E x x E x x 2⎡ ⎤ ⎡ ⎤β − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  -  /  = / .
 

 

The result follows considering a Taylor series expansion of TS (stopping at the second 

term due to the quadratic nature of the payoff) around price-taking equilibria. The key to 

simplify the computations is to notice that at price-taking equilibria total surplus is 

maximized.  

 
Allocative and productive inefficiency. Consider a symmetric information structure. We 

can decompose the total inefficiency of a regime with symmetric strategies with respect 

to a price-taking regime R in terms of allocative and productive inefficiency. Let 

i in nu x x≡ −  and R R
i in nv x x≡ − . Then we can show that  
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( ) ( ) ( ) ( )( )2 2R R
n n i iETS ETS / n E x x E u v / 2⎡ ⎤ ⎡ ⎤− = β + λ − + λ −⎢ ⎥ ⎣ ⎦⎣ ⎦

, 

where ( ) ( )2R
n nE x x / 2⎡ ⎤β + λ −⎢ ⎥⎣ ⎦

 corresponds to allocative inefficiency (loss in surplus 

when producing, in a cost-minimizing way, an average output nx  different from the 

benchmark R
nx ) and ( )2

i iE u v / 2⎡ ⎤λ −⎣ ⎦  to productive inefficiency (production of an 

average output in a non cost-minimizing way). The decomposition follows noting that if 

average outputs nx  and R
nx  are produced in a cost minimizing way then for all i, then 

R R
in in n nx x x x− = − . 

 
Proof of Proposition 2: Let us show first the order for the price difference 

( ) ( ) ( )22c c c
n n n n n nE p p var p p E p p⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − + −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

. We have that 

( ) ( )
( ) ( ) ( )( )( ) [ ]

2 2
c c c c c c

n n n n n n n n n n22 c
n n

var p p a a a a c a c c var s
1 c 1 c

β⎡ ⎤− = − + β − + −⎣ ⎦
+ β + β

, 

and 

( )( ) ( ) ( ) ( ) ( )( )(
( ) ( ) ( )( )( )) [ ]

c c c 2 c c c c
n n n n n n n n n n n nc

n n

c 2 c c c c
n n n n n n n n n

1E p p c c b b c b b b c c
1 c 1 c

a a c a a a c c E s .

⎡ ⎤− = αβ − + β − − β − − −⎣ ⎦ + β + β

+ β − + β − − −

 
The terms [ ]nE s  and [ ]nvar s are of the order of a constant. Therefore, the order of 

( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 depends only on the order of the coefficients a, b and c. We obtain: 

( )
c

n n
n

a a a
n n 1 c

⎛ ⎞−β
− = ⎜ ⎟⎜ ⎟β + λ + λβ −⎝ ⎠

 , which is of order1/ n ; 

( ) ( )( )( ) ( )
2

c
n n 2 2

n n

b b
1 M n n 1 c1 n 1

ε

ε θ

⎛ ⎞σθ β
− = ⎜ ⎟⎜ ⎟+ λ β + λ + λβ −σ + + − ρ σ ⎝ ⎠

 , which is of order 

21/ n ;  
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( ) ( )
1

c 1
n n n

n

c c / M 1
n n 1 c

−

−
⎛ ⎞⎛ ⎞β⎜ ⎟− = + λ − λ +⎜ ⎟⎜ ⎟+ β −⎜ ⎟⎝ ⎠⎝ ⎠

, which is of order 1/n (note that nM is 

of the order of a constant). We conclude that ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 is of the order of 2n/1  since 

it is a quadratic function of the terms ( )c
n na a− , ( )c

n nb b−  and ( )c
n nc c− .  

 
We deal now with the order of magnitude of ( )c

n nETS ETS / n−  using the lemma above. 

We have that ( ) ( )2 2c 1 c
n n n nE x x E p p−⎡ ⎤ ⎡ ⎤− = β −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 , since n np x= α − β  and c c
n np x= α − β , 

and we know from the first part that this is of order 21/ n . (In fact, it is easy to see that  
 

[ ]
2c

c n n
nc

n n

a avar x x var s
1 c 1 c

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎡ ⎤− = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟+ β + β⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
and the first term is of order 21/ n  while the second is of the order of a constant.) 
 
Now,  
 

( ) ( )22c c c
in in in in in inE x x E x x var x x⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − + −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

and  
 

( ) ( ) ( ) [ ]c c c c c c
in in n n n n n n n n n nE x x b b a a c c E p c E p p⎡ ⎤ ⎡ ⎤− = − − − θ + − + −⎣ ⎦ ⎣ ⎦ . 

All the terms are of order 1/n and therefore ( ) 2c
in inE x x⎡ ⎤−⎣ ⎦  is of order 21/ n . We have 

 
( ) ( ) ( )c c c c c

in in n n i n n n n n nvar x x var a a s c c p c p p⎡ ⎤⎡ ⎤− = − + − + −⎣ ⎦ ⎣ ⎦ . 

 
With some manipulations we obtain 
 

( ) ( )
2

c c c c2c c cn n n n n n n n
n n n n nc ci i i

n n n n

a c a c a c a cvar x x a a var s 2 a a var s
1 c 1 c 1 c 1 c

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

β β− = − + − + β − −
+β +β +β +β
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For the first summand we know that ( )2c
n na a−  is of the order of 21/ n  and [ ]ivar s  is a 

constant. For the second summand, it is immediate that the two terms in the bracket are of 
the order of 21/ n  while  [ ]nvar s  is of the order of a constant. The conclusion follows.♦  

 
 
Appendix II: Cournot competition 
 

Cournot competition 

Consider the market exactly as before but now firm i sets a quantity contingent on its 

information { }is .17 The firm has no other source of information and, in particular, does 

not condition on the price. The expected profits of firm i conditional on receiving signal 

si and assuming firm j, j ≠ i, uses strategy j jX (s ) , are 

( )( ) 2
i i i n j j i i i ij i

E s x P X (s ) + x E s x
2≠

λ
⎡π ⎤ = − ⎡θ ⎤ −⎣ ⎦ ⎣ ⎦∑ . 

 

 From the F.O.C. of the optimization of a firm we obtain 

( )i i i ip E s x x
n
β

− ⎡θ ⎤ + λ =⎣ ⎦ . 

(Note that given that the profit function is strictly concave and the information structure 
symmetric, equilibria will be symmetric.) It follows that 
 

[ ]n

n

p E MC 1
p n

−
=

η
 

 

where [ ] ( )n n
n n i i i i i ni 1 i 1

1 1E MC E s x E s x
n n= =

≡ ⎡θ ⎤ + λ = ⎡θ ⎤ + λ⎣ ⎦ ⎣ ⎦∑ ∑ and ( )n np / xη = β . The 

margins are larger or smaller than in the supply function equilibrium case depending on 
whether the slope of supply nc  is positive or negative since in the Cournot case they 
correspond to the case of nc 0= .  
 

                                                 
17  See Vives (2002) for related results when cost parameters are i.i.d. and Vives (1988) for the common 

value case. 
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The following proposition characterizes the Bayesian Cournot equilibrium and the price-

taking Bayesian Cournot equilibrium (denoted by a superscript c). Both equilibria are 

different from their supply function counterparts (except in the knife-edge case for which 

nc 0= ) since there is no conditioning in the market price. We will abuse somewhat 

notation and we will use the same notation for parameters at the Cournot equilibrium than 

at the supply function one. 

 

Proposition A.1. There is a unique equilibrium and a unique price-taking Bayesian 

Cournot equilibrium. They are symmetric, and affine in the signals. Letting 
2 2 2/( )θ θ εξ ≡ σ σ + σ  the strategies of the firms are given (respectively) by: 

 

( ) ( ) ( )n i n n iX s b a s= α − θ − − θ , where na ,2 n 1
n n

ξ
=

β −
+ λ + β ρξ

and n
1b
1 n

n

=
+⎛ ⎞λ + β⎜ ⎟

⎝ ⎠

; 

( ) ( ) ( )c c c
n i n n iX s b a s= α − θ − − θ , where c

na ,n 1
n n

ξ
=

β −
+ λ + β ρξ

and c
n

1b =
λ + β

. 

 

Proof: Drop the subscript n labeling the replica market and let 1β = . We consider first the 

Bayesian Cournot equilibrium. We check that the candidate strategies form an 

equilibrium. The expected profits of firm i conditional on receiving signal si and 

assuming firm j, j ≠ i, uses strategy ( )jX ⋅ , are 

  ( )i i i j j ii i ij i

1 1E s x E s E X s s x
n n 2≠

⎛ ⎞λ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤π = α − θ − − +⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠
∑ . 

Then first order conditions (F.O.C.) yield 

( ) ( )i i i j ji ij i

1 12 x s E s E X s s
n 2 n ≠

λ⎛ ⎞ ⎡ ⎤⎡ ⎤+ = α − θ −⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ , for i = 1,..., n. 
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Plugging in the candidate equilibrium strategy and using the formulae for the conditional 

expectations for i iE s⎡ ⎤θ⎣ ⎦ and j iE s s⎡ ⎤⎣ ⎦ , 

 

( )i i iE s s 1⎡ ⎤θ = ξ + − ξ θ⎣ ⎦  and ( )j i j i iE s s E s s 1⎡ ⎤ ⎡ ⎤= θ = ξρ + − ξρ θ⎣ ⎦ ⎣ ⎦ , 

it is easily checked that they satisfy the F.O.C. (which are also sufficient in our model). 

To prove uniqueness we show that the Bayesian Cournot equilibria of our game are in 

one-to-one correspondence with the (person-by-person) optimization of an appropriately 

defined concave quadratic team function G. A team decision rule ( ) ( )( )1 1 n nX s ,...,X s  is 

(person-by-person) optimal if it can not be improved upon by changing only one 

component ( )iX ⋅ (i.e. each agent maximizes the team objective conditional on his 

information and taking as given the strategies of the other agents.) Let 

( ) ( ) ( )i i iG x x f x−= π +  where 

( ) ( ) 2
k ji i j j j k jj i j i k, j i

1 1f x x x x x
n 2 2n ≠− ≠ ≠ ≠

λ⎛ ⎞α − θ − + −⎜ ⎟
⎝ ⎠

= ∑ ∑ ∑ . 

This yields  

( ) ( ) 2
j j j i jj j i j

1 1G x x x x x
n 2 2n ≠

λ⎛ ⎞= α − θ − + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . 

We obtain the same outcome by solving either 
ix i imax E s⎡ ⎤π⎣ ⎦  or 

ix imax E G s⎡ ⎤⎣ ⎦  since 

( )i if x−  does not involve ix .  

Note now that person-by-person optimization is equivalent in our context to the global 

optimization of the team function (since the random term does not affect the coefficients 

of the quadratic terms and the team function is concave in actions, Radner (1962, 

Theorem 4)). Invoke the result by Radner (1962, Theorem 5)), which implies that in our 

model, the components of the unique Bayesian team decision function of the equivalent 
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team problem are affine. Based on the above three observations we conclude that the 

affine Bayesian Cournot equilibrium is the unique equilibrium. 

A similar argument establishes the result for the Bayesian price-taking equilibrium. Then 

the F.O.C. for firm i is given by   

( ) ( )i i i j ji ij

1X s E s E X s s
n

⎡ ⎤⎡ ⎤λ = α − θ −⎣ ⎦ ⎣ ⎦∑ , 

and the solution is a (person-by-person) maximum of a team problem with an objective 

function which is precisely the ETS. ♦ 

 

 

We consider, as before, convergence to price taking and its speed as the economy is 

replicated. The following proposition characterizes the convergence of the Bayesian 

Cournot equilibrium to a price-taking equilibrium. ETS ( c
nETS ) denotes here the 

expected total surplus at the (price-taking) Bayesian Cournot equilibrium. 

 

Proposition A.4. As the market grows large the market price np  at the Bayesian Cournot 

equilibrium converges in mean square to the price-taking Bayesian Cournot price c
np  at 

the rate of 1/ n . (That is, ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 tends to 0 at the rate of 21/ n .) The difference 

( )c
n nETS ETS / n−  is of the order of 21/ n .  

 

Proof: Consider wlog the case 1β = . 

Let ( )( ) ( )( )c c c c
n n n n n n n n n ny p p x x b b a a s= − = − = − α − θ + − − θ . Recall 

that ( ) [ ]( ) [ ]22
n n nE y E y var y⎡ ⎤ = +⎣ ⎦ . We have that [ ] ( )( )c

n n nE y b b= − α − θ  because 

[ ]nE s = θ . It is easily seen that ( )c
n nb b− is of order 1/ n  (indeed, ( )c

n nn b b−  tends to 

( )21/ 1+ λ  as n tends to infinity). Therefore [ ]( )2
nE y is of order 21/ n . Furthermore, 

[ ] ( ) [ ]2c
n n n nvar y a a var s= − . We have that [ ] ( )( )( )2 2

nvar s 1 n 1 / nθ ε= + − ρ σ + σ , which is 
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of the order of a constant for 0ρ >  (or 1/ n for 0ρ = ), and that ( )c
n na a−  is of order 1/ n  

(because ( )c
n nn a a− tends to ( ) 2−−ξ ρξ + λ as n tends to infinity). Therefore the order of 

[ ]nvar y  is 21/ n  for 0ρ >  (or 31/ n  for 0ρ = ). We conclude that in any case the order of 

c
n n ny p p= −  is 1/ n . Consider ( )c

n nETS ETS / n−  now. According to the Lemma above 

and given that equilibria are symmetric we have that 

( ) ( ) ( )( )2 2c c c
n n n n in inETS ETS / n E x x E x x / 2⎡ ⎤ ⎡ ⎤− = β − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. We have just shown 

( )2c
n nE x x⎡ ⎤−⎢ ⎥⎣ ⎦

 to be of order 21/ n . We have that 

( ) ( )22c c c
in in in in in inE x x E x x var x x⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − + −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

. Now, c
in inE x x⎡ ⎤−⎣ ⎦ is of the same order 

as c
n nE x x⎡ ⎤−⎣ ⎦ , 1/ n , and ( ) ( )2c c 2 2

in in n nvar x x a a θ ε⎡ ⎤− = − σ + σ⎣ ⎦ , is of order 21/ n  because 

( )c
n na a−  is of order 1/ n . Therefore, ( )2c

in inE x x⎡ ⎤−⎢ ⎥⎣ ⎦
 is of order 21/ n . We conclude that 

( )c
n nETS ETS / n− is of the order of 21/ n . ♦ 
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